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ABSTRACT' 

Research contributions from our group have evinced significant progress in the 

solid-state chemistry of the rare-earth metal haiides. This thesis presents results of the 

first extension of this progress into the scandium-tellurium and related ternary systems. 

The first evidence for the e.visience of metal-rich compounds in this system ^as the 

synthesis of Sc.Te. The internal metal-bonded features of the structure are double quasi-

infinite chains of trans-edge-sharing metal octahedra, further augmented on each end by 

square-pyramids down the chain. These scandium chains have a blade-like shape and are 

spaced apart by tellurium atoms and a scandium zigzag chain. A second metal-rich 

compound was uncovered in Sc^Te,. Chains of trans-edge-sharing octahedra are again 

featured in much of the metal framework, but condensed into 2D sheets. In the YnTe, 

analog there is apparent disorder on some of the internal metal positions within the 

chains. The metal-richest compound synthesized in the scandium-tellurium system was 

Sc^Te,. A higher degree of metal aggregation forms in four trans-edge-sharing metal 

octahedra chains condensed into 3^3 blocks, and linked together to form much thicker 

2D sheets compared to SckTc,. Interesting distortions were analyzed with relationship to 

higher symmetry structures. The insertion of later transition metals into the earlier 

transition-metal framework results in the formation of the compounds Sc,Ni2Te2, 

ScoMTcj (M = Mn. Fe, Co, Ni), Y^MiTe, (M = Fe, Co, Ni) and the corresponding 

hydride, Y^NiiTe^Hiu,,,,. These compounds contain diverse sheet and columnar metal 

frameworks. Structural interrelationships among the many known ternary compounds are 
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analyzed. The reaction of small amounts of aluminum into the scandium-tellurium 

systems revealed new substitution chemistry. The systems ScsB^B',., (B = A! or Ga; B' = 

Sn, Sb or Te) contained varied amounts of the triel elements (B) substituted on the same 

sites for either the tetrel, pnictide or chalcogenide (B'), respectively. Analysis of the 

synthesis and structure of these compounds was used to incrementally improve the 

continuously evolving scientific answers about recurring structural features and 

sinicture/property relationships in solids. 

' This research was supported by the National Science Foundation (Solid State 
Chemistry grant DMR-9510278) and was carried out in the facilities of Ames 
Laboratory, U.S. Department of Energy 
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CHAPTER 1. GENERAL BACKGROUND MATERIAL 

Introduction 

To increase ihe knowledge of solid-state compounds is the goal of the 

experimentation and analysis described in this thesis. Since nature constructs a solid 

based upon the most efficient energetic gains and kinetic barriers, atomic structural and 

bonding features within one or several systems may be very similar. Chemical intuition 

is developed by recognizing the geometric and electronic interrelationships of atomic 

packing and extending them to the construction of new compounds. This approach is 

used in the analysis of the research results, which involved the synthesis of new-

compounds containing scandium and tellurium, and sometimes a late transition metal. 

Parallel reactions with yttrium were used to lest chemical flexibility of a structure type, 

while metallic compounds containing metal clustering was the goal. 

Previous investigations into the scandium-tellurium system were performed in 

1959 and the early 1960's. The first compound reported to form from the combination of 

scandium and tellurium was SciTe,,' having a NaCI structure type, with vacancies 

randomly distributed on the scandium sites. The compound is valence balanced (Sc ' and 

Te •). and there is no direct metal-metal bonding. A NiAs structure type was found in the 

next reported compound, ScTe,* while a polytype having both the NiAs and NaCI atomic 

packing was reported for Sc: jTe,.- Even though these compounds arc not valence 

balanced, neither structure contains metal-atom clustering. Beyond these initial results, 

no systematic explorations into the metal-rich chemistry of scandium and tellurium had 
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been reported. This relatively simple binary system was prime for e.xperimental 

exploration. 

However, related research in other metallic systems has uncovered a great number 

of compounds with early transition metals in combination with the halides or 

chalcogenides.'' '' Those examples with scandium and yttrium in combination with a 

halide are SciClm." and Y,Cl,.' A basic structural unit inherent in both of the compounds 

is the quasi-infinite trans-edge-sharing octahedral chain formed by the early transition 

metal. The chains are doubly condensed in the former, and singly in the latter. One can 

find more chemistry by incorporating a third element, such as a late-transition metal, 

which becomes inserted within the early-transition metal octahedra. Some of these 

c o m p o u n d s  a r c  R . 1 , , M  ( R =  S c .  Y ;  M  =  M n ,  F e ,  C o ) , "  Y „ I | o R u , ' '  Y j l j R u , ' "  S c , ^ B r , x Z 4  ( Z -

Mn, Ru, Os)," and Yi^XjoRuj (X= Br, I).'- The basic structural unit within each 

compound is an octahedron again, cither singular or condensed into chains, tetramcrs, or 

sheets of scandium or yttrium, that is centered by the late-transition metal. The discrete 

early transition-metal octahedra in the temaries usually have the edge-capping halides in 

the well known M^X,: configuration, as opposed to a face-capped M^Xk arrangement. 

Bonding for the MfcX,; cluster is optimized at 14 18 electrons (i.e. Y^lioRu), while for 

M(,Xs it is usually 21-24 electrons.'^ In the more condensed metal frameworks, such as 

in infinite chains and sheets, face capping is more oAen exhibited by the halides, and no 

discernible electron count preference. The relatively well-explored chemistry of the 

metal halides has revealed many cluster shapes and patterns preferred by reduced 

scandium or yttrium. The research described herein answers the question of how these 



www.manaraa.com

3 

cluster shapes and patterns are re-expressed when halogens are replaced with tellurium. 

Related compounds may also be found in the metal-rich chcmistry of titanium and 

zirconium chalcogenides, such as Ti-jSe:,'"* Ti||Se4,'^ TinZ,"* '' and TiiZ,'" ''' (Z - S, Se), 

Zr,Te/" and Zr,Te.*' The metal framework in these compounds is 3D in connection, and 

also with no discernible preference for electron count or directional bonding. They are 

much condensed versions of the quasi-infinite trans-edge-sharing metal-octahedral chains 

apparent in the scandium and yttrium halides described above, and as described in a 

review.-- The research results here includes many relationships to this electron- richer 

chalcogenide chemistry. 

In solid-state chemistry, valence electron concentrations (VEC), and the metal-to-

nonmetal proportions play key roles in the determination of structural features and types. 

The structural and electronic relationships of new metal-bonded compounds comprising 

scandium and tellurium are compared w ith the known chemistries of the halides and of 

the electron-richer transition-metal chalcogenidcs. Highlights of this research include an 

appreciation of cooperative matri.x and bonding effects (Ch. 2. 3. and 5), distortions in 

low-dimensional metals (Ch. 4), new structural interrelationships (Ch. 5, 6), and the 

amazing llexibility of some structure types (Ch. 7. 8), all within the Sc-Te and related 

systems. 
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Experimental Techniques 

Starting Materials 

All compounds were synthesized from an appropriate mixture of the elements 

with either SciTe3 or YTej. which were used instead of the relatively volatile and active 

tellurium. The elements were used as received, with the manufacturer and purity levels 

of the starting materials reported in the respective chapters. 

To synthesize SciTe, and Y,Te„ the elements were loaded in a 2:3 stoichiometry 

into a fused-silica container. The fused silica container was evacuated, sealed off, and 

heated to 450''C for 12 h and then to WOT for 72 h. The sample was allowed to 

radiatively cool to room temperature. Guinier film data confirmed the products were the 

R,Tc, (:!95%), NaCl-typc phases. 

In some instances, the scandium and yttrium metals were powderized according to 

the method as reported by S.-J. Hwu.-' The method consists of the preparation of the 

brittle ScHj or YH;, which is ground into small pieces, thermally decomposed back to the 

metal under dynamic vacuum at 700 - 750"C. and stored inside a He-filled dry bo.x with 

the other starting materials. 

Inert Atmospheres 

The air-sensitive character of many of the products and starting materials required 

the use of oxygen and moisture free environments. All reactions were loaded inside a 

helium-filled dry box from Vacuum Atmospheres Co., model DLX-OOl-S-P, equipped 

with a Vacuum Atmospheres DRl-TRAIN regeneration system, model HE-493. The 
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helium atmosphere was continuously circulated through an activated Cu/molecular sieve 

catalyst to minimize moisture and oxygen levels. The moisture level of the helium 

environment was continuously monitored using a Panametrics System 3A hygrometer. 

A nitrogen-filled Blickman glovebox, equipped with a microscope, was used to 

handle all product materials The glovebox was outfitted with an identical gas 

purification system by Vacuum Atmospheres, model HE-493. The moisture level of the 

nitrogen environment was continuously monitored using a Panametrics model 700 

hygrometer. 

During customary work usage, the water levels in the dry box or glovebox never 

exceeded I 2 ppm. 

Reaction Containers 

The highly reactive nature of the materials required the use of tantalum tubing as a 

container material during the reactions. Prior to use, the 3/8" tubing was cut to size, 

usually to I Yz" pieces, and cleansed with an acid mixture of 55% sulfuric, 25% nitric, and 

20% hydrofluoric acid by volume. After thorough rinsing and drying, each tube was 

crimped on one end and welded together under an argon atmosphere in an arc welder. 

The tubes, with one open end, were then transferred to the dry box for use. 

Inside the dry box, starting materials for each reaction were weighed out on metal trays 

and carefully poured into the tantalum tubing. The tubes were crimped shut and placed 

inside a glass jar for transportation to the arc-welder for final sealing. Total time outside 

an inert atmosphere was usually less than 1 - 2 minutes for a crimped tantalum tube. The 
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sealed tubes were cleansed again in the acid solution, washed thoroughly, and sometimes 

further sealed inside a evacuated silica Jacket. The silica jacket is used to protect the 

tantalum tubing from oxidation and breakdown at high temperatures in the tube furnaces. 

During the sealing procedure of the fuscd-silica jacket, a Welch Duoseal vacuum pump 

and mercur>' difiusion pump were used in linear combination to evacuate the container. 

Additionally, the fused-silica jacket was heated under vacuum with a natural gas torch to 

remove any moisture from the walls of the container before sealing. 

Not all chemical reactions required the full procedure here, and cogent details are 

found in the experimental section of cach chapter. 

Synthetic Equipment 

Three types of synthetic equipment were employed for chemical reaction of the 

starting materials: tube furnaces, a vacuum furnace and arc-melting. 

A majority of the reactions were performed in simple tube furnaces with a 

maximum operating temperature of 1200"C. All reactions carried out in these furnaces 

were sealed in tantalum and fused-silica tubing. Programmable temperature controllers 

from Eurotherm and J-type thermocouples were used to control and monitor the 

temperature cycles. Heating cycles were varied and depended on the system under study, 

but most reactions required temperatures >800''C to initiate product formation in an 

acceptable amount of time. Heating to within ̂ SO^C of the melting point of a compound 

and cooling at a rate of I - 5''C/hr for several hours was usually sufTicient to achieve 

desired crystal growth. 
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A vacuum furnace from Thermal Technology Inc., Model # 1000-2560-FP20, was 

used on occasions that required temperatures >l 200"C and a dynamic vacuum. Reactions 

performed in this furnace were sealed only in tantalum tubing. A Eurotherm 

programmable temperature controller and Aeropak T/C themiocouple were used to 

control and monitor the temperature cyclcs, as before. 

A Miller Maxstar 91 arc-melter, connected to the glovebox through a port, was 

used on a few occasions for e.vtreme temperatures and for those reactions that habitually 

reacted with tantalum tubing at high temperatures. Inside the glovebox, the reactions 

were first pressed (-1-2 tons) into 10mm pellets, containing about 300mg of starting 

materials, and then transferred to the arc-melter. A water-cooled copper hearth with three 

depressions was used to hold a zirconium getter pellet and two reaction pellets. The arc-

melter was loaded with the copper hearth and then evacuated and re-filled with argon 

three times before use. Under a flowing argon atmosphere, the zirconium getter was 

melted/activated, and the reaction pellets were arc-melted for approximately 20 seconds 

per side at about 50 - 70A. The zirconium getter was repeatedly re-melted during the 

procedure. After cooling, the reactions were then moved back to the dry box. 

Pressed pellets of the starting materials were made with a SPECAC manual 

hydraulic press, P/N 15011, and dies. 5mm and 10mm dies were used for reactions in 

tantalum tubing or for arc-melting, respectively. 
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Product Identification 

The product was initially prepared for analysis inside the nitrogen-filled glovebox 

with an optical microscope mounted on the plexiglass top. The tantalum tubing was 

opened inside the glovebox by cutting off one of the welded ends with a metal tube 

cutter. Products were then poured out of the tube, or scrapcd from the tubing walls with a 

scalpel, into a mortar. The sample was visually inspected for crystal morphology and 

crystallinity. Crystal morphologies helped to preliminarily identify the character and 

number of phases present, and to streamline the process of crystal picking. If crystals of 

unknown morphology and suitable crystallinity were present, they were loaded into 

0.3mm diameter capillary tubes with grease and sealed with a gas microtorch outside the 

glovebox. Otherwise, the entire product was then ground into chunks and powder using a 

mortar and pestle inside the glovebox. The majority of the ground sample was later 

sealed off in evacuated Pyrex tubing using a natural gas/oxygen torch, while a small 

portion was separated from the bulk and mixed with NIST (NBS) standard silicon. 

The sample, mixed with standard silicon, was fixed between two pieces of 

cellophane tape to reduce exposure to air, transferred to a rotating sample holder, and 

placed inside a Guinier X-ray powder diffraction unit. The Guinier cameras, Enraf-

Nonius model FR552, gave filtered monochromated Cu Ka, radiation (A. = 1.540562 A), 

with the samples under continuous vacuum by Welch Duoseal vacuum pumps. The X-

ray powder diffraction patterns were recorded with Kodak BIOMAX MR Scientific 

Imaging Film. 

The observed X-ray diiTraction powder patterns were compared with theoretical 
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powder patterns of known compounds to assist in product identification. The theoretical 

powder patterns were calculated and output using the program POWDER.*"' In multi 

component samples the percentage of each of the known products was estimated from the 

visual inspection of powder line intensities. An LS20 Line Scanner from KEJ 

Instruments allowed a more precise measurement of line positions and intensities using 

the Si standardization to account for the individual camera and film variations. Final 

lattice parameters of the compounds were calculated using these line positions in the least 

squares program LATT.-' 

Single Cr>-stal X-ray DiiTraction 

After identification of an unknown in the powder-diffraction patterns, the quality 

of single crystals obtained therefrom were evaluated from Laue photographs taken with 

Weissenberg cameras. The best single crystals were taken for data set collection on one 

of three single crystal X-ray diffractometers, a Rigaku AFC6R with a rotating anode, an 

Enraf-Nonius CAD4 with a sealed tube, or a Bruker CCD equipped with an area detector 

and a sealed tube. Each diffractometer output monochromatic Mo Ka, radiation (A. = 

0.71069 A). Single-crystal data sets were collected and analyzed using associated 

software analysis packages. Some separate packages used for refinement and data 

manipulation included the TEXSAN*" and SHELXTL*' software programs. Details of 

the data collection and analysis may be found in the experimental sections of each of the 

chapters. 
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Energy-Dispersive X-ray Spectroscopy Measurements 

Elemental compositions of the crystals and powdered samples were occasionally 

evaluated via energy-dispersive X-ray spectroscopy (EDS) on a JEOL system 840A 

scanning electron microscope (SEM), equipped with an IXRF X-ray analyzer system and 

a K.CVCX Quantum light element detector. Tjpical data collections utilized a beam of 

approximately 20k V and 0.3nA to gain a count rate of about 2500 s Standards were 

measured to ensure proper calibration. 

Magnetic Susceptibilit>' Measurements 

Where appropriate, magnetizations for the compounds were measured with a 

Quantum Design MPMS SQUID magnetometer from 6 to 300 K in a field of 3 T. 

Powdered samples of 30 - 60 mg were loaded into a container that sandwiched the 

material between the flat ends of two glass rods inside a concentric 3 mm i.d. fused-silica 

tube. This container was loaded inside the He-filled dry box, capped with a plug, and 

sealed outside the box using a natural gas/oxygen torch. The raw data were corrected for 

the diamagnetism of both the atomic cores and sample holders. 

Electrical Resistivity Measurements 

Resistivities of powdered, sized samples were collected using a Hewlett-Packard 

4342A Q-meter. Measurements in this technique rely on the surface conduction of a 

sample to change the quality factor of a coil. For an average measurement of the surface 

area of the panicles, the samples were passed through a sieve to collect particles having 
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grain sizes between 250 and 425 ^im in diameter for use. To minimize contact between 

particles, the samples were diluted with approximately 1 cm^ of dry chromatographic 

AUOj inside a Pyrex tube. Each sample was loaded inside the He-filled dry box and later 

scaled inside the Pyrex tubing with a natural gas/oxygen torch. 

The samples were measured in the Q-mctcr operating at 34 MHz between 100 and 

300 K. The procedure involved measuring the quality factor of the coil with the sample 

both inside (Q) and outside (Q.,) at every temperature. This change in the quality factor 

(Al/Q) was used to calculate the sample resistivity (p) using the formula:'"-'' 

_ 

where B is a constant that is calibrated for every coil (4.84 * 10'), V is the sample 

volume, a is the average particle radius, and A( 1 Q) is 1 Q - 1/Q„. 

Electronic Structure Calculations 

Extended Hiickel band calculations were carried out for many of the structures 

using the EHMACC"' program operating on a PC. The calculations were carried out 

within the tight-binding approximation for the full structures at k-points spread out over 

the irreducible wedge. Suitable starting parameters, listed in the respective chapters, were 

obtained with the associated Iterate program,^" and were used to calculate the densities of 

states (DOS) and crystal-orbital overlap populations (COOP) for each structure. 
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Dissertation Organization 

This dissertation has been organized in the form of papers either formerly 

published or in a potentially publishable format. Chapters 2-5 belong to the former 

class, with the citation listed at the beginning of each, while chapters 6 8 fall in the later 

category, The appcndiccs contain research results for which either no regular ordered 

solutions were found (Appendix A) or research which produced interesting, but divergent 

side products (Appendix B). 

The thesis has been divided into parts A and B, to better delineate between the 

results for the binaries and ternaries. 
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PART 1. BINARY PHASES 
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CHAPTER 2. Sc Je: A NOVEL EXAMPLE OF CONDENSED 
METAL POLYHEDRA IN A METAL-RICH BUT 
RELATIVELY ELECTRON-POOR COMPOUND 

A communication published in Angewandte Chemie 

Angew. Cliem., hit. Ed. Engl. 1997, 36, 1974 

Paul A. Maggard and John D. Corbctt 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Introduction, Results and Discussion 

The earlier transition-metal chalcogenides have both extended the boundaries of 

solid state chemistry and challenged our understanding of stability, structure and bonding. 

Some recent examples of metal-rich chalcogenides of group 4 and 5 metals are TiqSe,,'"' 

Zr,Te,'*' Hf,Te;.'''Ta,S;,'''' and TaiSe.''' Highly reduced binary compounds of the earliest 

transition metals Sc, Y, La have been limited to a few halides and to the 

monochalcogenides (NaCl-type), which may be significantly substoichiometric.'"' Only a 

few truly binary halides are known, Sc^CI and Lal.'^' No phase diagraiiis exist for 

any of the scandium or yttrium chalcogcnides, and the only binary Sc-Te phases reported 

are ScjTe, and ScTe.'*' This situation clearly results from a lack of investigation of these 

quite refractory compounds. This article describes the first example, ScjTe, an 

exceptional compound among chalcogenides in the nature of its metal-metal bonding. 

A [010] projection of the SciTe structure down the short (3.919 A) axis is given in 

Figure 1. Both a large complex chain unit and a simple zig-zag chain of scandium are 
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evident. The Sc-Sc distances vary from 3.05 A upward with no distinctive breaks, but the 

justification of the 3.5 A limit for "bonds" marked in Figure 1 will be given later. 

Considerably closer contacts and tighter bonding are found within the larger Sc chain, 

which is detailed in Figure 2 with atom numbers and independent distances (the Sc6-Sc6 

and Sc4 Sc4 bonds lie on centers of symmetr>')- The cenlral building block emphasized 

by the darker bonds is the same as can be visualized in Sc-Cl],,'as well as in several 

interstitial derivatives such as Pr,I,Ru,'''' namely, the familiar pairs of quasi-infinite 

chains of distorted trans-edge-sharing metal octahedra (e.g., (1,1 )-5--(6,6)-6) that are 

further co-condensed through sharing of Sc6-Sc6 side edges. (The choice of Sc 1 -Sc6 

(3.49 A) as the shared edges and Sc5, Sc6 (d = 3.52 A) for the apices of the compressed 

octalicdra is fairly arbitrary (below). The i- coordinates around the periphery of the 

double chain alternate between V* and V*.) 

The shortest Sc-Sc distances in the structure lie within the double chain. 3.05 - 3.27 

A. Surprisingly, these values arc the same to about 0.1 A less than those in Sc-Clm, while 

both the shared trans-edge Sc 1 -Sc6 and the chain repeat are about 0.4 A longer. The first 

difference may refiect the presence of the Sc2, Sc3 appendages or the bonding within the 

chain (below), while the increased chain repeat, 3.92 A, logically derives from the larger 

diameter of closed-shell Te. (An alternate description in terms of metal tetrahedra 1-5-6-6 

that are more loosely coupled along the chains is more consistent with observed distances but 

less useful in comparing other structures.) There are no short Te-Te separations so their 

problematic bonding is not a concern. The metal environments of all tellurium atoms are 

monocapped trigonal prisms, and Sc-Te distances range between 2.86 and 3.14 A, less than 
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nearly all d(Sc -Sc). 

Generally, the nonmetal:mctal ratios in metal-rich compounds seem to be the major 

factor in determining structure, more overtly than electron counts. Although the similar 

double metal chains in Sc-Clm [= Sc-'(SCftCln,)^ ] are easy to assess in terms of average 

o.xidation state (' 1.17), a similar partitioning in the more complc.x ScTc is not very dear. 

The double-chain framework described above is further augmented by edge-sharing square 

pyramids (Sc 1,2,3; open bonds in Figure 2) that also share Scl-Scl edges along the double 

chains. The Sc-Sc distances within these appendages are the same or longer (3.25, 3.32, 3.42 

A), befitting the greater amount of tellurium bound to these atoms. The anion-poorer nature 

of the present compound also allows closer approaches between the metal building blocks. 

Finally, the 3.48 A repeat in the Sc4-Sc4 zig-zag chain is somewhat larger than within the 

augmented double chain, and closer to what we assign as interchain separations, 3.53(x2) A 

for Sc4-Sc6, 3.67 A for Sc4-Scl, 3.68 A for Sc4~Sc2, and beyond. However, all of these are 

well segregated by o\'crIap populations (below). The larger Sc -Sc separations appear to be 

attributable to matrix effects and the shortage of bonding electrons. 

A novel way to view the Sc^Te result is as a dissociation product of the metal 

frameworks in electron-richer chalcogcnidcs of later transition metals with comparable 

stoichiometrics. For example, the metal network in Ta^Se contains layers of interpenetrating 

bcc Ta, as in the element.'-'and similar but more condensed frameworks appear in TinSs''"' 

and Ti^Se,.''' Related building blocks can also be perceived in TijS, ZrjS, Zr,Se (all Ta;P-

type),'"' and HfjTe^.''' A similar feature can be generated from Sc^Te if each Sc4 is moved 

toward Sc6 in the closer chain, extended pairs of condensed Sc4-5-6-l cubes centered by 
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Sc6. The Sc2,3 portions may be further fragments of what was once a sheet. 

Extended-HUckel calculations have been carried out for the full structure at 48 k-

points.''-' The total DOS shows a Te p-orbital-based valence band (with some Sc mi.xing 

through covalency) between about -14.0 and -10.8 eV. A large conduction band. Figure 3, is 

generated almost entirely from Sc 3d orbitals with only traccs of Tc p in the upper rcachcs. 

Six small DOS features between -7.0 and -8.5 eV all originate with the Scl -5, 1-6, 5-6. 6-6 

intracluster bonding interactions. The Fermi energy for such an electron-poor compound 

falls low in the band near 6.4 eV. while the Sc-Sc COOP functions show that the states 

remain bonding up to --6.0 eV. (In contrast, all bonding states are occupied in HfiTe^.''') 

The compound appropriately exhibits a Pauli-like paramagnetism, Xmcj*) = 3.4 * 10 emu 

mol ', and is logically presumed to be a metal. 

Interesting features of the bonding are revealed by differences in pair-wise Sc-Sc 

Mulliken overlap populations (MOP) as a function of distance. These emphasize the strength 

and delocalization of the metal bonding in the double chain region, especially among Scl. 5. 

6. and the contrasting weakness of all bonding about Sc4. In fact, directly following the 

0.306-0.172 MOP for the three shortest Sc-Sc separations (Figure 2) are those for the 

longish Scl-Sc6 separation across the octahedral waist (3.49 A, MOP 0.166) and for 

Sc5-Sc6 between its vertices (not interconnected in Figure 2 for clarity) (3.52 A, 0.170). 

Next is that for the shorter Sc5-Sc6 (3.27 A, 0.146) on the periphery of the chain. These 

contrasts presumably reHect an enhanced electron concentration and delocalization within the 

chains, and suggest a reason for the marked compression of the octahedra across Sc5-Sc6. 

Still lower populations order fairly well with increasing distances, including those within the 



www.manaraa.com

20 

Scl, Sc2, Sc3 appendages (0.119-0.069). Another irregularity appears for the Sc6-Sc6 and 

Sc3-Sc3 interactions along the chain (0.050-0.040), even at 3.92 A! Finally, the longish 

3.48 A Sc4-Sc4 separations in the zig-zag chains have an MOP of only 0.026, followed by 

still lower populations for all interchain Sc4-ScX contacts. Thus bonding of Sc4 to all other 

scandium atoms appears to be weak and not an important part of the stability of this 

compound. Naturally, Sc4 and Sc2 have, in opposition, the largest Sc-Te overlap 

populations. A charge flow among the rather different types of scandium atoms from Sc -Sc 

and Sc-Te bonding is reflected in the relative MOP. largest for Sc6 and Scl. least for Sc4 

and Sc2. 

Other highly reduced group-3 chalcogenides of this type are under study, for example, 

the result of condensation of four chains of edge-sharing octahedra into four-blocks in 

Sc.,Tej.'"' A rich and novel chemistry of these chalcogenides is expected by virtue of the 

conflicts between the electron-poor but metal-rich characteristics. 

Experimental Procedures 

ScjTe,'*' was prepared by reaction of 2:3 Sc and Te in fused SiO; at 900 °C for 72 h. 

A pressed pellet of Sc.Te, and Sc foil with a ScjTe stoichiometry was arc-melted for 20 s per 

side, sealed into a tantalum tube, and reacted in a vacuum furnace at 1125 C for 72 h, 

followed by cooling at 5 °C h ' to 850 "C. The structure was determined from crystals in the 

product, which was later shown to be single phase Sc^Te according to its Guinier pattern."^' 
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Supporting Information 
SciTe. A Novel Example of Condensed Metal Polyhedra in a 

Metal-Rich But Relatively Electron-Poor Compound 

Paul A. Maggard and John 0. Corbett 

Table SI. Single Crystal X-ray Data Collection and Refinement Parameters for ScTe. 

Formula weight.g mol' 

Space group. Z 

Lattice parameters," A 

a 

h 

c 

K (A') 

g/cm' 

Radiation; 20^^, 

Octants measured 

Temperature, "C 

Absorp corr. method 

Relative transmission range 

//, cm ' (Mo K„) 

Reflections measured 

observed (I j 3o(I)) 

unique observed 

ll • 3o(l))l 

Number of variables 

Residuals /?; % 

Goodness of fit 

217.53 

Puma (No. 62), 12 

20.178(5) 

3.9186(7) 

10.675(2) 

844.1(5) 

5.134 

Mo K„; 54" 

h, k, ±1 

23 

psi-scan (2). DIFABS 

0.470-1.000 

146.8 

2229 

1654 

839 

4.2 

56 

4.3; 5.5 

1.84 

" Guinier data with Si as an interna! standard, k = 1.540562 A. 23" C. 
* R = 2I1FJ-IFJI/S1FJ; R^ = [2(o(|FJ-|FJ)-/2a)(F„)^]' a> = l/o,-. 
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Table S2. Positional and Isotropic Thermal Parameters for SciTe. 

Atom Position .V B..(A-')<' 

Tel 4c 0.07326(6) 0.25000 0.8569(1) 1.1(1) 

Te2 4c 0.12603(6) 0.75000 0.2227(1) 0.8(1) 

Te3 4c 0.23625(6) 0.75000 0.5302(1) 0.8(1) 

Scl 4c 0.1079(2) 0.75000 0.6606(3) 0.9(1) 

Sc2 4c 0.1625(2) n. 75000 0.0638(3) \ M \ )  

Sc3 4c 0.2286(2) 0.25000 0.7457(3) 1.0(1) 

Sc4 4c 0.0320(2) 0.25000 0.1204(3) 1.0(1) 

Sc5 4c 0.1376(2) 0.25000 0.4307(3) 0.9(1) 

Sc6 4c 0.9905(2) 0.25000 0.6078(3) 1.1(1) 

- B,, = (87t-/3)2,2,U„a,Va,a,. 
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Table S3. U values A* for ScjTe." 

Atom I I b U,, 

Tel 0.0150(7) 0.0148(6) 0.0136(6) 0.0017(5) 

Tc2 0.0086(6) 0.0125(6) 0.0086(5) 0.0001(4) 

Tc3 0.0077(6) 0.0113(6) 0.0108(6) 0.0006(4) 

Scl 0.007(2) 0.017(2) 0.011(1) 0.000( 1) 

Sc2 0.009(2) 0.017(2) 0,010(1) 0.000(1) 

Sc3 0.012(2) 0.015(2) 0.009( 1) 0.000(1) 

Sc4 0.012(2) 0.015(2) 0.013(2) -0.001(1) 

Sc5 0.013(2) 0.012(1) 0.010(1) -0.001(1) 

Sc6 0.009(2) 0.021(2) 0.013(1) -0.000( 1) 

" U12 = U23 =0. 
" T = exp[-27i-(U,,hV- + + Uul-c'- + 2U|,hkaV + 2U,jhla'c* + 2U,.,klb*c')]. 
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Table S4. Selected Bond Distances in Sc^Te (A)." 

Scl 2.\ 2.952(3) Scl Scl 2x 3.9186(7) Sc4 Sc6 2x 3.530(4) 

Sc2 2x 2.896(3) Sc2 3.419(5) Sc5 Scl 2x 3.197(4) 

Sc4 2x 2.900(30 Sc3 2x 3.254(4) Sc3 2x 3.787(4) 

Sc4 2.934(4) Sc4 3.669(5) Sc3 3.831(5) 

Tel 2x 3.919(1) Sc5 2x 3.197(4) Sc4 3.938(5) 

Sc6 2x 3.126(4) Sc5 2x 3.919(1) 

Sc2 2.860(3) Sc2 Scl 3.419(5) Sc6 2x 3.268(4) 

Sc3 2.944(4) Sc2 2x 3.919(1) Sc6 3.519(5) 

Sc4 2x 2.938(3) Sc3 2x 3.322(4) Sc6 Scl 2x 3.126(4) 

Sc5 2x 2.971(3) Sc3 3.726(5) Scl 3.486(5) 

Sc6 2.966(4) Sc4 2x 3.684(4) Sc4 2x 3.530(4) 

Te2 2x 3.919(1) Sc5 2x 3.268(4) 

Te3 3.965(2) Sc3 Scl 2x 3.254(4) Sc5 3.519(5) 

Tc3 2x 3.973(2) Sc2 

Sc2 

2x 3.322(4) 

3.726(5) 

Sc6 

Sc6 

2x 

2x 

3.047(5) 

3.919(1) 

Scl 2.941(4) Sc3 2x 3.919(1) 

Sc2 2x 2.918(3) Sc5 2x 3.878(4) 

Sc3 2x 3.026(3) Sc5 3.831(5) 

Sc5 2x 2.988(3) 

Te2 3.965(1) Sc4 Scl 3.669(5) 

Te2 2x 3.973(2) Sc2 2x 3.684(4) 

Te3 2x 3.919(2) Sc4 

Sc4 

Sc5 

2x 

2x 

3.481(6) 

3.919(1) 

3.939(5) 

" Distances cutofTs: Sc-Sc, Te-Te, 4.0 A; Sc-Te, 3.1 A. 
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Table S5. Sc-Sc Distances and Overlap Populations in Sc,Te. 

Atom 1 Atom 2 Distance (A) Overlap population 

Sc6 Sc6 3.05 0.366 

Scl Sc6 3.13 0.228 

Scl Sc5 3.20 0.172 

Sc5 Sc6 3.52" 0.170 

Scl Sc6 3.49" 0.166 

Sc5 Sc6 3.27 0.146 

Scl Sc3 3.25 0.119 

Sc2 Sc3 3.32 0.087 

Scl Sc2 3.42 0.069 

Sc6 Sc6 3.92* 0.050 

Sc3 Sc3 3.92'' 0.040 

Sc4 Sc6 3.53^ 0.035 

Sc4 Sc4 3.48 0.026 

Scl Sc4 3.67^ 0.025 

Scl Scl 3.92" 0.021 

" Across octahedra. 
'' Chain repeat. 
' Interchain distances. 
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Figure I. A view of the unit cell of SciTe along [010] (Sc; small circles, Te; large 
circles). Bonds are drawn for t/(Sc- Sc) < 3.50 A and d{Sc- Te) < 3.15 A. 
All atoms lie on mirror planes at .v = 1/4, 3/4. 
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Figure 3. The total densities of states (DOS) for the conduction band in Sc,Te. 
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CHAPTER 3. THE SYNTHESIS, STRUCTURE, AND BONDING 

OF Sc Je3 AND COOPERATIVE MATRIX AND 
BONDING EFFECTS IN THE SOLID STATE 

A paper published in Inorganic Chemistry 

Inorg. Chem. 1998, .^7. 814 

Paul A. Maggard and John D. Corbett 

Department of Chemistry, Iowa State University, Ames, lA 50011 

Abstract 

Sc^Te, and Y^Te, have been prepared by high-temperature solid-state techniques. The 

structures of both were determined from single crystal and powder X-ray diffraction methods 

to be monoclinic, C2lm (No. 12) with Z = 8. Accurate lattice constants from Guinier powder 

film techniques at 23 C are: ScsTe,, a = 28.842(7), b = 3.8517(6), c = 22.352 (5) A, P = 

122.51(2)°: YsTe„ a = 31.153(7), b = 4.0703(4), c = 24.375(5) A, P = 122.80(2)". The 

layered structure of the title compounds consists of a complex network of chains of trans-

edge-sharing metal octahedra condensed into two types of corrugated sheets that are 

separated by tellurium. In terms of metal-metal bonding (as Judged by overlap populations), 

the isotypic TinS, and Ti^Scj are more 3D in aggregation, while these scandium and yttrium 

tellurides are 2D. This difference in dimensionality is attributed to the cooperative effects of 

increased anion size and decreased valence electron concentration. This is described in 

detail for ScHTe3. Contrasting paramagnetic properties are reported for the two, Pauli-like for 

YjTe, and temperature-dependent for ScnTe3, in parallel with the behaviors of the parent 
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metals. 

Introduction 

The study of reduced chalcogenides of the early transition metals has led to a great 

variety of new chemistry and to a broader understanding of the bonding in solids. E.xamples 

of reduced group 4 chalcogenidcs include, but arc not limited to, TisZ,' * and Ti^Z,' •* 

(Z=S,Se). TiiiScj.- TiySej," HfiTc," Hf,Tei,'' Hf,Sc,,'' and Zr,Tc.'" While the metal-rich 

chalcogenides of groups 4 and 5 transition metals have been heavily e.xplored, those of the 

group 3 transition elements are almost unknown, the only e.xample being the recently 

discovered SciTe with a complex chain structure for scandium." Examination of the 

literature for the Sc-Te and Y-Te binary systems reveals no investigations into the metal-rich 

parts of either, and the most reduced compounds reported in both systems are RiTcj and RTe 

fi) = Sc, Y).'-" This paper describes the first metal-rich yttrium 

chalcogenide, YsTe,, and the isotypic Sc^Tei. 

To a chemist, "understanding" a structure usually means justifying its existence and 

stability. For reduced chalcogenides of the early transition metals, this may mean only a 

conclusion that the distances and apparent bonding in the structure are "reasonable". The 

problem is how to justify, or understand, the relative stability of one unremarkable phase in a 

binary system that has a few electrons holding together a metal fragment with little to no 

discernible preference for electron counts or directional bonding. For reduced chalcogenides, 

innumerable structures may seem reasonable, but there is no delineation between an 

imaginary and an actual structure. Articles have provided theories justifying the existence of 

some particular reduced chalcogenide relative to known structural alternatives and the 
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elements. Recently, the valence electron concentration together with the cohesive energy of 

the metal was used to rationalize the existence and structure type of HfjTe (Nb>Se type).' 

Alternatively, the stabilities of Ti^S and Ti^Sj were attributed to the enhanced efficiency of 

both metal-metal and nonmetal-metal bonding in each compared with those in the pure metal 

and TiS.'-* 

Clearly, atom sizes, valcnce electron concentrations, and the metal-to-nonmetal 

proportions play key roles in the determination of structure features and types. The structural 

features seen in transition-metal-rich chalcogenides are predominantly condensed body-

centered cubes or distorted octahcdra. With the discovery of more reduced chalcogcnides of 

the earliest transition metals, new insights into stability may be gained about the interplay of 

the above three variables and how they influence the structural features seen in more 

electron-rich systems, Ti*S, and TinSe, in particular. No thorough analysis of the structure 

and bonding features in these titanium compounds has appeared, however. Some analysis of 

"where the electrons are" and of the interplay of matri.x and bonding efiects may be found in 

the results of extended Hilckel calculations. The new Sc^Tcj and YuTe, are significant in 

that they represent the electron-poorest, yet among the most metal-rich chalcogenides of the 

transition metals reported to date. 

Experimeotal Section 

Synthesis. All materials were handled in He-filled or N;-filled gloveboxes to reduce 

contamination by "adventitious" impurities. The syntheses of both Sc^Te) and YsTe3 began 

with the preparation of the corresponding Sc;Te3 and Y^Te, phases (NaCI-t>pe with 

disordered cation vacancies). The elements were used as received (Sc turnings, 99.7%, 
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Aldrich; Y sheet 99.8%. Alfa; Te powder, 99.99%, Aldrich) and were loaded in a 2:3 

stoichiometry into a fused silica container. The fused silica container was evacuated, sealed 

ofT, and heated to 450 X for 12 h, then to 900 C for 72 h. The sample was allowed to cool 

radiatively to room temperature. Guinier film data confirmed the products were the R^Te,. 

NaCl-type phases. Appropriate amounts of these and scandium or yttrium metal to give the 

8:3 stoichiometry were then pelletized inside a He-filled glovcbox with the aid of a hydraulic 

press. The resulting pellets were arc-melted for 20 seconds per side with a current of 70 

amps. Guinier patterns of the products at this point revealed a mixture of SCfTe^" and SciTe 

for the scandium reaction and a blurred pattern similar to that of YnTe, for the yttrium 

reaction. Each sample was then sealed inside tantalum tubing, annealed at 1150 C for 72 

hours, and allowed to radiatively cool. It should be noted that annealing temperatures 10-20 

X still higher resulted in reaction of the scandium products with the tantalum, and 

subsequent failure of the tubing. After annealing, Guinier powder diffraction film data 

showed that both ScnTe, and YsTe, had been obtained in apparently quantitative yields 

(single phase). 

Powder X-ray Diffraction. The powder diffraction patterns of SckTc, and YsTe, 

were obtained with the aid of an Enraf-Nonius Guinier powder camera and monochromatic 

Cu Ka, radiation. The samples were crushed into powder form, mixed with standard silicon 

(NIST), and placed between two strips of Scotch-brand tape on a frame for mounting on the 

camera rotation motor. Lattice parameters were obtained by least squares from 35 measured 

and indexed lines per sample. The lattice parameters are given in Table 1 along with those 

for the two titanium analogues for comparison. 
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Single Cr>'stal DifTraction. Several black, irregularly shaped crystals were obtained 

from both the scandium and yttrium reactions. All crystals were mounted inside 0.3 mm i.d. 

glass capillaries that were sealed off and mounted on metal pins. Their crystal quality was 

checked by means of Laue photographs, and the best crystal from each group selected. A 

data set for the Sc«Te, phase was collected on a CAD4 diffractometer (Mo Ka, radiation) at 

room temperature. Twenty-live centered reflections gathered from a random search were 

used to determine provisional lattice constants and the crystal system. Half a sphere of data 

was collected {/». ±k, ±1), and these were subsequently corrected for Lorentz and polarization 

effects. The data were further corrected for absorption with the aid of two averaged ij;-scans. 

Of 4310 measured reflections (20 s 50 ), 2233 had 1 > 3o(I), and 1356 of these were unique. 

E.xtinction conditions suggested the possible space groups C2, Cm, and C2/m. Because the 

intensity statistics indicated a centrosymmetric space group, the structure was solved by 

direct methods (SHELXS'") and refined with the package TEXSAN in C2/m.^' Subsequent 

refinements in the acentric space groups did not yield lower residuals or improved 

parameters. After isotropic refinement, the data were better corrccted for absorption with 

respect to the third dimension of the crystal by means of DIFABS"* and then averaged with 

9.0%. The final refinement converged at R(F)/R^ = 3.7/3.7% for the loaded 

composition Sc^Te^. Selected crystallographic data, atomic positions, and isotropic-

equivalent temperature factors arc given in Tables 2 and 3. Additional data collection and 

refinement parameters, the anisotropic displacement parameters, and a complete distance list 

arc in the Supporting Information. These, as well as the FJF^ listing, are also available from 

J.D.C. 

The diffracting powers of the scandium crystals were in all cases much better than for 
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the YgTej crystals. A data set collected on the best di(Tractor among the yttrium crystals gave 

only -20% observed reflections. The structure could be refined isotropically to /?« < 8% as 

isostructural with SckTc,, but the number of observed data were generally insufficient and 

these were very weak. Nonetheless, the atomic positions found and the obserxed X-ray 

powder diagrams made it clear that YsTe, has the same structure as Sc8Te3. 

The unit cell choice for Table 3 needs to be made clear. We have retained the origin 

as reported for the original Tii,S,' (the center of the Scl6-Scl6 bond) but have transformed 

the cell to give the preferred cell with the smaller (obtuse) P angle. The later report on TinSe, 

- has the same cell but with the origin displaced from ours by c/2. 

Properties. Powdered samples of ~50mg of ScnTe, and YhTc j  were each loaded 

inside a He-filled glovebo.x so that they were sandwiched between two glass rods inside a 3 

mm i.d. fused silica tube. Magnetizations for the samples were measured from 6 to 300 K in 

a field of 3 T with the aid of a Quantum Design MPMS SQUID magnetometer. The data 

were corrected for diamagnetism of both the sample holder and atom cores. Resistivities of 

powdered, sized samples of -50 mg of ScsTe, and YnTe, diluted with AUO, were each 

measured with a "Q" apparatus between 100 and 300 K. 

Band Calculations. Extended Hiickel calculations were carried out within the tight-

binding approximation" for the full structure of Sc^Tej at 32 k-points spread out over the 

irreducible wedge. H„ parameters employed were the same as the charge-iterated values 

obtained previously for Sc,Te" (in eV): So; 4s, -6.75; 4p, -3.38; 3d, -6.12; Te: 6s, -21.20; 

6p,-12.00. 
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Results and Discussion 

Structural Description. A ncar-[OIO] section of the SckTc, stmcture down the short 

(3.85 A)/) axis is given in Figure 1. Evident are two separate and independent corrugated 

chains of scandium atoms along tfthat are separated by tellurium atoms along c. The 

scandium atoms are further bonded down the short projection axis into layers (not shown). 

The shortest distance between the corrugated sheets is the 3.69 A marked for Scl0-Scl4, 

which will be shown to be a nonbonding interaction. The Sc-Sc distances within these 

chains vary semi-continuously from 3.00 A to 3.48 A, as shown in Table 4 and marked 

separately on Figure 2. There are no distinctive breaks in this range, and the next larger 

value, 3.67 A, is a fairly special interaction. This length trend is quite similar to that 

observed in ScjTe. The scandium-scandium distance limit in drawing bonds in the Figures 

has been set at 3.5 A, in correspondence with the analysis of Sc,Te and as likewise justified 

later in terms of overlap populations. The observed (12-bondcd) and calculated single bond 

metallic distances for the pure metal are 3.24 A and 2.88 A,*" so the observations for Sc*Te, 

pertain to relatively electron-poor delocalized bonding. 

Both corrugated sheets contain structural building blocks that are grossly similar to 

those in the isostructural TixS, and TinSC). The structure of Ti^S, was described in terms of 

condensed body-centered-cubes,' while the structural features in Ti^SC} were described as 

condensed, distorted octahedra.* Preference will be given to the condensed, distorted 

octahedra description here, with some mention of the body-centered-cubic features when 

appropriate. In the less condensed chain or sheet. Figure 2A, two main scandium units are 

evident, an infmite trans-edge-sharing chain of single octahedra (Sc5 and Sc6) and four 

infinite trans-edge-sharing chains of octahedra condensed through sharing of six side edges 



www.manaraa.com

38 

(not faces). (Such condensation, but only of a pair of chains, was first observed in SciCl,o."') 

The quadruple chain is called the Z unit from hereon (Sc3, Sc9, Scl I, Scl3, Scl5). The Z 

unit is also clearly two interpenetrating body-centered cubes centered by Scl5, e.g., Sc9, 11, 

IS, 13. The single edge-sharing octahedral chain has the shortest distance among the shared 

edges (Sc5-Sc5, 3.09 A), and longer apex distances for the non-shared edges (Sc5-Sc6, 3.20 

A, 3.27 A). The verte.x-vertex distance, Sc6-Sc6, is correspondingly large. The Z unit 

likewise has the shortest distances among the shared edges of different octahedral chains 

(Scl5-Scl5, 3.00 A; Scl3-Scl5, 3.14 A), and longer distances among the outside 

(nonshared) and inside trans edges of the chains (3.14 A - 3.43 A). It is not by chance that 

the shorter scandium distances in the sheet are those furthest from the tellurium positions. 

The Z units and the single octahedral chains are connected via the lone Scl4 atoms 

(Sc5-Scl4, 3.35 A; Sc9-Scl4, 3.30 A) to generate the sheet, or puckered layer, but these are 

very weak bonds (below). 

The repeating unit in the other more condensed corrugated sheet is shown in Figure 

2B. The same Z unit can be discerned in the middle of the figure (Scl, 2, 7, 8, 10). But this 

unit is now further condensed on both ends through two fairly short edges (Scl-Sc7, 3.12 A) 

to strings of three octahedral chains that share vertices internally. This assembly, repeated 

down the b-axis, generates the second puckered layer or sheet with more Sc-Sc bonding, 

shorter distances and, presumably, tighter bonding than the first one. Again, the shortest 

distances occur in the shared edges of different octahedral chains of higher connectivity 

(Sc8-Sc8, 3.06 A, Sc8-Scl0, 3.11 A, Scl-Sc7, 3.12 A), with the longer scandium distances 

around the periphery, as before (3.12 A - 3.48 A). The unique octahedral chain that does not 

share vertices, only waist atoms (Sc4, 16 in 2B), is more squashed and has a relatively shorter 
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vertex-vertex distance (3.67 A) and stronger bonding therewith (below). The sheet in 2B 

also has more body centered fragments, those centered by Sc8 and (distorted) Scl6. The 

characteristic body-centered cubic fragments are more pronounced in Sc^Te, than in the 

electron-poorer Sc.Te, and arc even more pronounced in most of the electron-richer, metal-

rich chalcogenides of the group 4 and 5 metals. 

It should be noted that the relative cell dimensions and various modes of condensation 

seen in Figure 2 mean there are a wide variety of distances and distortions from idealized 

condensed octahedra. These occur particularly because of the long repeat in the waist of all 

of the octahedra (3.85 A) relative to the imagined shared trans edges near 3.30 A. Thus the 

average scandium octahedron is also compressed along the vertex-vertex direction by about 

0.4 A relative to the ideal model. These differences are further compounded by the marked 

shortening of most of the side edges that are shared between octahedral chains. 

Notwithstanding, the octahedral units still remain the best overall descriptors for these 

structures. 

All tellurium atoms in ScnTe, are surrounded by trigonal prisms of metal on which the 

rectangular faces arc further capped one to three limes by more scandium. The Sc-Te 

distances vary only from 2.91 to 3.01 A. All Te-Te distances are 3.83 A, and so Te-Te 

bonding is not a significant concern. 

Although a good quality data crystal could not be found for YsTe,, it is cleariy 

isostructural with ScnTe,. The change in the metal causes a shift to larger lattice constants 

(Table I) and therefore longer metal-metal distances, by 0.25 to 0.40 A or to -10% greater 

than in Sc^Te,. The bonding trends and features in SchTC] are equally valid for Yj,Te3 save 

for one important feature, a changed size differentiation between R and Te in what can be 
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called a matrix effect (below). 

Calculations. Figure 3 shows the total DOS (densities of states) for ScgTe,. The 

Fermi level (solid line) lies in a valley between two smallish peaks in a region lhat is 

dominated by scandium d orbital contributions; hence the solid is metallic. The dashed line 

is the projection of tellurium contributions, which are significant only in the upper energy 

levels, well above Ep. Figure 4 shows the COOP (crystal orbital overlap population) curve 

for the total Sc-Sc bonding in ScxTe,. As in Sc^Te, many metal-metal bonding states above 

E^ remain unoccupied. Two small peaks in the DOS around the Fermi level arc both Sc-Sc 

bonding while the largest peak above them (-5.9 eV) is a mixture of nonbonding and 

antibonding states. As seen before in Sc.Te, the interesting array of small peaks in the DOS 

at -7.0 eV and below arise from specific Sc-Sc interactions at shorter and shorter distances. 

Such a complex structure as this provides a wide variety of distances and, 

presumably, bond strengths that need to be sorted out. Distances alone, although often taken 

to somehow vary inversely with the strength of the interactions, can be very misleading when 

these are determined largely or solely by matrix effects, that is, by just the contact sizes of the 

packed units. Examples can be clearly seen in Sc^Te." The interlayer (sheet) distances in the 

present structure, SclO-Scl4 for example (Figure I), are certainly of this character as these 

are established principally by the size of tellurium, with vanishingly small evidence of 

bonding according to the overlap population sum (OP) up to E,. for each atom pair. 

For these purposes, pairwise overlap populations are used in Table 4 as the basis for 

ordering the listed distances. As expected, the overlap populations generally correlate with 

the bond distances, but there are some significant deviations that reflect important bonding 

details. The six largest overlap populations are associated by and large with the six shortest 
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distances. One is the shared Sc5-Sc5 edge in the nearly isolated octahedral chain, but the 

other five short distances and large overlap populations pertain to the shared interior edges 

between octahedral chains (Sc pairs 15-15,8-8,8-10, 1-7, 13-15) at 3.00 - 3.14 A. As 

found with Sc^Te, the theme is that electrons are concentrated within the condensed units and 

thereby give rise to higher overlap populations. (Use of these pairwise measure may still 

leave delocalized (multicenter) bonding underappreciated.) In contrast, the outer regions of 

these, where scandium has fewer like and more tellurium neighbors, have low overlap 

populations relative to the distances. In the first category are the longer shared-waist 

distances that have relative high populations, namely atom pairs 1-10, 1-12, 2-8, 9-13 and 

11-15 at 3.26 - 3.34 A with OP values ofO.171 to 0.263. In contrast, the pair populations for 

the distances around the outside of the condensed units have low OP's relative to the 

distances, viz., 3-9, 3-13, 9-15 and 11-13 in Fig. 2A and 1-16, 2-8, 2-10,4-16 (*2), 7-10 

and 12-16 in Fig. 2B. Unshared trans vertices in octahedra give rise to relatively high OP's 

and short bonds, i.e., about Sc6 in the lone single chain (2A) and for the trans Sc4-Sc4 pair 

(2B), where a long 3.67 A separation in the latter has an OP value of 0.141. The last is the 

only contradiction to the 3.50 A upper limit used for bonds in the figures. The single 

octahedral chain of Sc5 and Sc6 is relatively isolated since the overlap populations for the 

"bonds" to the bridging Scl4 are only 0.04 and 0.05. Of course, significant bonding along b, 

the 3.85 A projection axis, is expected for what is described as a 2D corrugated sheet 

structure, and 10 of the 16 Sc-Sc, overlap populations are large enough to appear in Table 4. 

Evidence that electrons are preferentially delocalized within the aggregated cluster 

sheets while being removed from the outlying Sc atoms with more Te neighbors is a 

recurrent theme. The shortest interlayer distance, 3.69 A for Scl0-Scl4 in Figure 1, has an 
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overlap population of only ca. 5^ 10^! Interactions between filled, low lying tellurium 

orbitals with higher lying orbitals on nearest neighbor scandium atoms have the efTect of 

pushing the latter even higher in energy, so that they do not interact and bond as well with 

interior scandium atoms. Drawing bonds in this structure based only on distances is 

misleading. In a relatively electron-poor but metal-rich system, geometry, efficient packing, 

and stoichiometry dictate that some metal atoms must be packed close together even if there 

are no electrons for their bonding. Thus, scandium pairs such as 9-14 and 5 -14 with small 

OP's are held together not by bonding electrons, but through common electrostatic and 

covalent interactions with their anionic tellurium neighbors. This is similar to the way in 

which lithium atoms in LiF are held close by surrounding Huorine atoms, and the zig-zag 

scandium chain in SciTe, by surrounding tellurium atoms. In other words, these group 3 

chalcogenides all illustrate how matrix effects, dictated by simple geometry and efficient 

packing considerations, cooperate with the "electronics" or bonding within the solid to 

generate stable phases in a relatively electron-poor system. While the overlap populations 

should in the simplest cases correlate with distances (and Pauling bond orders), both the 

positions of the "bonds" relative to the metal aggregate and the number of anion neighbors 

have a considerable effect on the actual overlap between a particular pair of metal atoms. In 

Sc^Tc) and Sc^Te, the scandium bonding is primarily within and between the trans-edge 

sharing octahedra chains, while the outlying scandium atoms are held together more 

by a cooperative network of tellurium atoms. 

Property IVIeasurements. Because of the nature of the metal-metal bonding and the 

sizable densities of states at Ef from extended Hiickel calculations, both SC^TC) and Y,Te3 

are expected to be metallic and Pauli-paramagnetic. High frequency measurements of 
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resistivities of the polycrystalline RgTcj phases over 100-300 K showed that both are 

metallic, but rather different. The resistivity of ScsTcj is -143 |iQ.cm at 298 K, 2.5 times 

that of the metal," with a temperature dependence of 0.16% K while that for YhTcj is 226 

liQ.cm, 3.8 times that of the metal" and with a variation of 0.39% K '. Both reflect the 

higher anisotropy of the binary structure type. The magnetic differences are also sizable. 

Figure 5 shows that YsTe, exhibits a Pauli-like, temperature-independent paramagnetism of 

about 1.25 * 10 ' emu mol-1. seven times that for pure yttrium metal, which is -1.8 * 10 "• 

emu mol ' and also temperature-independent.-^ The ratio of susceptibilities is roughly 

proportional to the 8:1 molar ratio of yttrium atoms in the two. Although nonmagnetic 

impurities in yttrium metal (such as oxygen or hydrogen) are reported to reduce the magnetic 

susceptibility,'- the large structural change for Y^Tcj makes improbable its interpretation as 

essentially yttrium metal with tellurium as an impurity. The substantial rearrangement and 

changed bonding still appears to give about the same DOS at judging from the 

susceptibility data, and then perhaps a similar number of conduction electrons, but this is not 

reflected in the resistivity results, perhaps because of the higher anisotropy. In further 

contrast, Sc^Te, exhibits a quite different and more complex paramagnetic behavior. Figure 

6A, with an appreciable temperature dependence. The effective moment vs. temperature is 

shown in Figure 6B. The data cannot be fit well by a simple nonlinear least squares function 

that includes Curie-Weiss and van Vleck-like terms. Pure scandium metal over -70-300 K 

shows a smaller temperature dependence." Although the earlier data have been described 

with a Curie-Weiss fit, ^(|r = 1.65 0 - -850 K, this is not a realistic treatment. The 25% 

increase observed in the scandium metal susceptibility between 300 (2.95 * 10 "* emu mol ') 

and 75 K could well arise from a temperature dependence of the density of states at Ef and 
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thence of the observed Xp- In fact, band calculations for scandium show a large peak at Ek.""* 

The situation with SCj,Te, is clearly not so simple. The room temperature value per 

scandium in ScgTe, is about one-fourth of that of the metal, and the temperature dependence, 

nearly five times greater. This may represent intermediate interactions in which itinerant 

electrons gain small orbital contributions at particular cores.*' With 16 unique Sc atoms in 

this structure, the possibilities are large, and the answer, probably complex. 

Structural Comparisons. Although ScnTe^ and VsTC) are isotypic with both TisS, 

and TisSe3, and the four structures do share approximately the same atomic positions, there 

are many differences in these relatively comple.x arrangements. The metal-metal bonding 

within the group 3 chalcogenides occurs in essentially 2D corrugated sheets, as judged by 

both distances and overlap populations, but the titanium examples differ appreciably in the 

number of metal-based electrons and the size of the chalcogen spacers. Figure 7, shows an 

equivalent [010] view of the TisS, structure, with the two corrugated sheets in this structure 

labeled A and B in analogy to Figure 2 and "bonds" drawn out to a limit of 3.2 A. The 

intrasheet Ti-Ti distances in the sulfide range from 2.71 A upward, with an average of 2.99 

A. To further aid the comparison, the metal-metal bonds marked in Figure 2 are shown as 

solid lines here, while any additional "bonds" are drawn as open connections. To make clear 

that the cutoff is not arbitrarily influencing the conclusion, an extended HUckel calculation 

and analysis on TiKS3 was used to verify that 3.2 A is a suitable limit for good bonding, as 3.5 

A is in Table 4. 

Although the gross features of the corrugated sheets in Ti,S,, Figure 7, are the same 

as with ScsTe3, Figure 2, there are in detail two significant differences. First, reflecting the 

greater number of valence electrons is the generally greater condensation and increase in 
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Ti-Ti bonding. Particularly chain A, Figure 7. is seen to contain many more "bonds" than 

does Figure 2A. The chain is internally more kinked and condensed, i.e., between the 

equivalent of atoms 5-9, 6-11 and 9-11 in Figure 2 A. Two octahedral chains are also more 

squashed, and the trans-edge distances fall above the bond distance limit (11-15). The 

already more condensed chain B is less changed, but has gained an additional 2-4 crosslink. 

Second and most important, distinctly more close contacts occur between the titanium sheets, 

from 3.15 A down to a quite short 2.93 A in what appears to be a more 3D metal-metal 

bonded structure. The decreased anion size ensures more close contacts between the sheets, 

and the system appears to react cooperatively to the additional electrons from titanium with 

more bonding, especially interchain and in chain A. Thus, cooperative effects of decreased 

anion size, increased valence electron concentration, and the resulting shorter metal-metal 

distances stabilize this flexible structure. What seems to be enlightening is that the 

analogous TisTe,, SchS j, or YnS, with different size proportions have not been found, 

although this may result at least in part from inadequate efTorts. The overall picture suggests 

there may be some kind of "magic" electron count needed to stabilize each structure, its 

features, or simply, the number of metal-metal bonds in a metal-rich compound. Electron 

count alone as a stability factor in metal-rich phases is perhaps less defmite because of the 

delocalized bonding, while matri.x effects are also a major factor. 

Conclusions. The isotypic Sc hTc j  and YHTe3 are significant in that they represent the 

electron-poorest, but yet the metal-richest chalcogenides reported for the early transition 

metals. Their chemistry relative to those of other early transition metal chalcogenides such 

as TiHCh3 provides insight regarding the bonding and existence of this novel structure type. 

Extended Hiickel calculations help one to roughly "locate" the electrons in the solid and also 
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allow one to assess the cooperative effects of anion size, cation positions, and valence 

electron concentration. Although ScnTe, and YsTe, exist in the same structure type as the 

sulfide and selenide of their electron-richer neighbor titanium, there are clear difTerences with 

the increased anion size, fewer elections, and larger metal distances in the fonner. This 

suggests a particular but flexible electron count or valence electron concentration is necessary 

to stabilize what is also a flexible structure. Magnetic susceptibility measurements on both 

compounds show quite different results, but more similar to the differences in the pure metals 

themselves. 
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Table I. Comparison of lattice parameters (A, deg) and cell volumes (A') for known MsCh, 
phases (Ch=S, Se, Te). 

Compound a h c p V 

TinS," 25.13(1) 3.327(2) 19.36(2) 123.1(5) 1356(7) 

TisSe," 25.562(4) 3.4411(5) 19.701(6) 122.25(1) 1466(1) 

Scje,' 28.842(7) 3.8517(6) 22.352(5) 122.51(2) 2u94(2) 

YhTc,' 31.153(7) 4.0703(4) 24.375(5) 122.80(2) 2598(2) 

" Ref. 1, converted to the same setting as for ScsTc,. 

" Ref. 2. 
' For X = 1.540562 A, 23 X. space group Cllm. 



www.manaraa.com

50 

Table 2. Selected crystal and refinement data for SchTcj." 

Form. \vt. 742.45 

Space group, Z C2/m(No. 12), 8 

g cm ' 4.710 

//(Mo Ka), cm ' 130.4 

rel. transm. coeff. range 0.832-1.00 

R, RJ % 3.7.3.7 

" Lattice dimensions in Table I. 
" R = 2IIFJ - |F,||/L|FJ; - [2vv(|FJ - |f,|)-/2u'(Fj-]' »• = l/o,.v 
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Table 3. Positional and Isotropic Thermal Parameters for ScxTej." 

Atom X * B^(A-)'' 
Tel 0.74108(6) 0.2799(1) 0.76(5) 

Te2 0.89524(6) 0.3142(1) 0.72(6) 

Te3 0.05620(6) 0.8265(1) 0.80(6) 

Te4 0.42614(6) 0.8074( 1) 0.72(6) 

Te5 0.86962(6) 0.9628( 1) 0.85(6) 

Te6 0.86855(6) 0.4690( 1) 0.77(6) 

Scl 0.4081(1) 0.5890(2) 0.9(2) 

Sc2 0.2773(2) 0.3979(2) 0.8(2) 

Sc3 0.3029(2) 0.2457(2) 1.0(2) 

Sc4 0.4262(2) 0.4318(3) 1.2(2) 

Sc5 0.4371(2) 0.9468(2) 0.7(2) 

Sc6 0.0087(2) 0.9131(2) 0.9(2) 

Sc7 0.9383(2) 0.7147(2) 1.0(2) 

Sc8 0.7987(2) 0.5304(3) 1.2(2) 

Sc9 0.7116(2) 0.1334(2) 0.9(2) 

SclO 0.6712(2) 0.3443(2) 1.0(2) 

Sell 0.6340(2) 0.9376(2) 0.7(2) 

Scl2 0.4615(2) 0.2859(2) 0.7(2) 

ScI3 0.8329(2) 0.1532(3) 1.3(2) 

Scl4 0.1507(2) 0.1911(2) 0.5(1) 

Scl5 0.2398(2) 0.0431(3) 1.7(2) 

Scl6 0.9882(2) 0.5681(2) 1.2(2) 

" All atoms in position 4/. v = 0. 

' B„ = (8ltV3)2,2,U„a,-a,-a,a,. 
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Table 4. Selected painvise distances in Sc^Te, ordered according to their corresponding 
overlap populations. 

Atom 1 Atom 2 Distance(A) Overlap 

Scl5 Scl5 3.00(1) 0.343 

Sc5 Sc5 3.09(1) 0.334 

Sc8 Sc8 3.058(7) 0.316 

Sc8 SclO 3.113(5) 0.316 

Scl Sc7 3.119(4) 0.312 

Scl3 Scl5 3.142(5) 0.297 

Scl Scl2 3.265(5) 0.263 

Sc9 Scl3 3.282(6) 0.220 

Sc5 Sc6 3.195(5) 0.209 

Sc2 Sc8 3.339(6) 0.204 

Sc4 Scl6 3.130(5) 0.178 

Scl SclO 3.334(6) 0.176 

Sc3 Sc9 3.138(5) 0.174 

Sell Scl5 3.425(6) 0.171 

Sc5 Sc6 3.272(5) 0.155 

Sc4 Scl6 3.214(5) 0.149 

Sc9 Scl5 3.196(6) 0.149 

Sc3 Scl3 3.265(5) 0.146 

Sc4 Sc4 3.672(9) 0.141 

Scl Scl6 3.230(5) 0.140 

Sc2 SclO 3.251(5) 0.139 

Sell Scl3 3.289(5) 0.129 

Scl 6 Scl6 3.456(9) 0.124 

Sell Scl5 3.425(6) 0.119 

Sc7 SclO 3.308(5) 0.119 
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Table 4. (continued) 

SclO SclO 3.8517(6) 0.119 

Scl3 Scl3 3.8517(6) 0.117 

Scl6 Scl6 3.8517(6) 0.114 

Sc8 Sc8 3.8517(6) 0.114 

Scl5 Scl5 3.8517(6) 0.111 

Sc2 Sc8 3.301(5) 0.106 

Scl Sc8 3.306(5) 0.100 

Scl2 Scl6 3.373(5) 0.099 

Sc7 Scl2 3.479(5) 0.093 

Sc7 Sc7 3.8517(6) 0.074 

Scl Scl 3.8517(6) 0.069 

Sc3 Scl5 3.869(8) 0.064 

Sc6 Sc6 3.8517(6) 0.060 

Scl3 Scl5 3.709(8) 0.059 

Sc9 Sc9 3.8517(6) 0.056 

Sc5 Sc5 3.8517(6) 0.055 

Sc9 Scl4 3.299(5) 0.048 

Sc8 SclO 3.794(7) 0.043 

Sc5 Scl4 3.352(5) 0.040 
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Supplementary Material 
The Synthesis, Structure and Bonding of ScsTe, and YhTc,. Cooperative 

Matrix and Bonding Effccts in the Solid State 

Paul A. Maggard and John D. Corbett 

Table SI. Single Crystal X-ray Data Collection and Refinement Parameters for ScsTe,. 

Formula weight 

Space group, Z 

Crystal Dimensions, mm 

Lattice parameters. A, A' " 

a 

h 

c 

P 

g/cm' 

Radiation; 20ma, 

Octants measured 

Scan method 

Temperature, "C 

Absorption corr. method 

/<, cm ' (Mo K„) 

Relative transmission range 

Number of reflections: 

measured 

observed (I 2 3o(l)) 

unique 

Number of variables 

3o(I)),% 

742.45 

C.V/H (No. 12), 8 

0.1 X 0.3 ^ 0.4 

28.842(7) 

3.8517(6) 

22.352(5) 

122.51(2) 

2094(2) 

4.710 

Mo K„; 50" 

h, ±k, ±1 

U) 

23 

i|j-scans, DIFABS 

130.36 

0.832-1.00 

4310 

2233 

1356 

133 

9.0 
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Table SI. (continued) 

Residuals R; R^,'' % 3.7; 3.7 

Goodness of fit 1.01 

Secondary E.xt. (10 ) 1.24(7) 

" Guinier data, Cu Ka, 22 "C. 
" R = S||FJ-|FJ|/S|FJ; R^ = [2g)(|FJ-|F,|)-/£u)(FJ-]' % to = 1/ov 
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Table S2. U,j values for ScxTe, (A'/Stt')." 

Atom 11 ^ ^11 u„ Un 

Tel 0.0128(8) 0.0078(9) 0.0085(8) 0.0059(7) 

Te2 0.0091(8) 0.0096(9) 0.0073(8) 0.0035(7) 

Te3 0.0102(8) 0.0107(9) 0.0089(3) 0.0049(7) 

Te4 0.0110(8) 0.0080(9) 0.0080(8) 0.0050(7) 

Tc5 0.0117(8) 0.0081(9) 0.0117(9) 0.0059(7) 

Te6 0.0100(8) 0.0092(8) 0.0101(8) 0.0055(7) 

Scl 0.013(2) 0.014(3) 0.010(2) 0.008(2) 

Sc2 0.012(2) 0.011(3) 0.008(2) 0.007(2) 

Sc3 0.011(2) 0.012(3) 0.015(3) 0.007(2) 

Sc4 0.016(2) 0.013(3) 0.017(3) 0.010(2) 

Sc5 0.013(2) 0.010(3) 0.008(2) 0.008(2) 

Sc6 0.008(2) 0.009(2) 0.016(3) 0.007(2) 

Sc7 0.013(2) 0.012(3) 0.012(3) 0.007(2) 

Sc8 0.022(3) 0.012(3) 0.022(3) 0.017(2) 

Sc9 0.010(2) 0.015(3) 0.008(2) 0.003(2) 

SclO 0.009(2) 0.020(3) 0.008(2) 0.003(2) 

Sell 0.014(2) 0.004(2) 0.007(2) 0.003(2) 

Scl2 0.011(2) 0.006(3) 0.010(2) 0.006(2) 

Scl3 0.013(2) 0.024(3) 0.013(2) 0.009(2) 

Scl4 0.007(2) 0.003(2) 0.008(2) 0.004(2) 

Scl5 0.011(2) 0.019(3) 0.036(3) 0.011(2) 

Scl6 0.012(2) 0.020(3) 0.011(2) 0.005(2) 

" T = exp[-27i-(U,,h-a" + V..k'h'- + U„lV- + 2UphkaV + 2Unhla*c* + 2U„klbV)]. 
"  U , ,  =  U ,3  =  0 .  
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Table S3. Bond Distances in Sc^Tej (A)." 

Tel Sc2 2x 2.966(4) 
Sc3 2x 2.989(4) 
Sc9 2.908(5) 
SclO 3.042(5) 
Scl4 2x 2.980(3) 
Tel 2x 3.852(1) 
Te2 4.086(2) 
Te4 4.118(2) 
Te6 3.831(3) 

Te2 Sc3 2x 2.960(3) 
Sc4 2x 2.983(4) 
Scl2 2x 3.010(4) 
Scl3 3.038(5) 
Scl6 2.952(5) 
Tel 4.086(2) 
Te2 2x 3.852(1) 
Tc3 4.072(2) 
Te6 3.927(2) 

Te3 Sc6 2.911(5) 
Sc7 2.946(5) 
Sell 2x 2.987(3) 
Scl2 2x 2.984(4) 
Scl3 2.980(5) 
Te2 4.072(2) 
Te3 2x 3.852(1) 
Te4 2x 4.030(2) 
Te5 3.991(3) 

Tc4 Sc5 2.957(5) 
Sc6 2x 2.985(4) 
Sc7 2x 2.984(4) 
SclO 3.023(5) 
Scl4 2* 2.951(3) 
Tel 4.118(2) 
Te3 2x 4.030(2) 
Te4 2x 3.852(1) 

Te5 Sc5 2* 2.895(3) 
Sc6 3.090(5) 
Sc9 2x 2.899(4) 
Sell 2x 2.989(4) 
Scl4 3.163(5) 
Scl5 3.088(5) 
Te3 3.991(3) 
Te5 2x 3.852(2) 

Scl 2x 2.986(1) 
Sc2 2x 2.943(3) 
Sc4 2x 2.940(4) 
Sc8 2.986(5) 
Scl6 2.933(5) 
Tel 3.831(3) 
Te2 3.927(2) 
Te6 2x 3.852(2) 

Tc6 2x 2.986(1) 
Sc4 3.819(6) 
Sc7 2x 3.119(4) 
Sc8 2x 3.306(5) 
SclO 3.334(6) 
Scl2 3.265(5) 
Scl6 2x 3.230(5) 

Tel 2x 2.966(4) 
Te6 2x 2.943(3) 
Sc8 2x 3.301(5) 
Sc8 3.339(6) 
SclO 2x 3.251(5) 

Tel 2x 2.989(4) 
Tc2 2x 2.960(3) 
Sc4 3.747(7) 
Sc9 2x 3.138(5) 
Scl3 2x 3.265(5) 

Te2 2x 2.983(4) 
Te6 2x 2.940(4) 
Sc4 3.819(6) 
Sc4 3.747(7) 
Sc4 3.672(9) 
Scl6 2x 3.214(5) 
Scl6 2x 3.130(5) 

Te4 2.957(5) 
Te5 2x 2.895(3) 
Sc5 3.089(9) 
Sc6 2x 3.195(5) 
Sc6 2x 3.272(5) 
Sc9 3.654(6) 
Scl4 2x 3.351(5) 

Sc7 

Sc8 

Sc9 

Te3 2.911(5) 
Te4 2x 2.985(4) 
Te5 3.090(5) 
Sc5 2x 3.195(5) 
Sc5 2x 2.272(5) 
Sc7 3.756(7) 

Tc3 2.946(5) 
Te4 2x 2.984(4) 
Scl 2x 3.119(4) 
SclO 2x 3.308(5) 
Scl2 2x 3.479(5) 

Te6 2.986(5) 
Scl 2x 3.306(5) 
Sc2 2x 3.301(5) 
Sc2 3.339(6) 
Sc8 2x 3.058(7) 
SclO 2x 3.113(5) 
SclO 3.794(7) 

Tel 2.908(5) 
Te5 2x 2.899(4) 
Sc3 2x 3.138(5) 
Sc5 3.654(6) 
Sell 3.693(6) 
Scl3 3.282(6) 
Scl4 2x 3.299(5) 
Scl5 2x 3.196(6) 

SclO Tel 
Tc4 
Scl 
Sc2 
Sc7 
Sc8 
Sc8 
Scl4 

Sell 

2x 

2* 

2x 

3.042(5) 
3.023(5) 
3.334(6) 
3.251(5) 
3.308(5) 
3.113(5) 
3.794(7) 
3.690(5) 

Te3 2x 2.987(3) 
Te5 2x 2.989(4) 
Sc9 3.693(6) 
Scl3 2x 3.289(5) 
Scl5 2x 3.294(5) 
Scl5 3.425(6) 
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Tabic S3, (continued) 

Te2 2x 3.010(4) 
Te3 2x 2.984(4) 
Scl 3.265(5) 
Sc7 2x 3.479(5) 
Scl3 2^ 3.800(6) 
Scl6 2x 3.373(5) 

Tc2 3.038(5) 
Te3 2.980(5) 
Sc3 2x 3.265(5) 
Sc9 3.282(6) 
Sell 2x 3.289(5) 
Scl5 2x 3.142(5) 
Scl5 3.709(8) 

Scl4 Tel 2x 2.980(3) 
Te4 2x 2.951(3) 
Te5 3.163(5) 
Sc5 2x 3.351(5) 
Sc9 2x 3.299(5) 
SclO 2x 3.690(5) 

Scl5 Tc5 3.088(5) 
Sc9 2* 3.196(6) 
Sell 2* 3.294(5) 
Sell 3.425(6) 
Scl3 2x 3.142(5) 
Scl3 3.709(8) 
Scl5 2x 3.00(1) 

Scl6 Te2 2.952(5) 
Te6 2.933(5) 
Scl 2^ 3.230(5) 
Sc4 2x 3.214(5) 
Sc4 2x 3.130(5) 
Scl2 2x 3.373(5) 
Scl6 3.456(9) 

" Distances listed out to Sc-Sc = 3.84 A, Sc-Te =3.1 A, and Te-Te = 4.2 A. 
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FigHrc 1. Near-[010] projection of the unit cell of Sc^Tej (99.9% probability thermal ellipsoids) with bonds drawn for 
d(Sc—Sc) ^ 3.50 A. The shortest intersheet distance, Scl0-Scl4, is marked. Dark atoms are tellurium; light 
atoms, scandiums. 
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Figure 2. (A) More open corrugated sheet in ScgTe, with bond distances marked. The sheet is infinite along the 
projection axis. Two-fold axes pass through the centers of the Sc5—Sc5 and Scl5—Scl5 bonds. (B) More 
condensed corrugated sheets in Sc^Te,. Two-fold axes pass through the centers of the Sc8—Sc8 and 
Scl6-ScI6 bonds. 
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Figure 3. Total densities of states (DOS) for ScjTcj. 
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Figure 4. Total Sc-Sc crystal orbital overlap population out to 3.8 A. 
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Figure 5. Molar magnetic susceptibility of Y^Tej as a function of temperature (K). 
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Figure 6. (A) Molar magnetic susceptibility of Sc«Te3 and its inverse as a 
function of temperature. (B) M vs temperature for ScgTC}. 
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Figure 7. Near-[010] projection of the corrugated sheets in Ti*Sj, with bonds drawn for </(Ti—Ti) < 3.20 A. Dark bonds 
are comparable to those in the chains shown in Figure 2, while open bonds are additional interactions in this 
structure. The interlayer distances are marked. Dark atoms are sulfur, light atoms, titanium. 
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CHAPTER 4. Scje,: A TWO-DIMENSIONAL DISTORTION 
WAVE IN THE SCANDIUM-RICHEST TELLURIDE 

A paper published in Journal of the American Chemical Society 

J. Am. Client. Soc. 2000, 122, 838 

Paul A. Maggard and John D. Corbett 

Department of Chemistry, Iowa State University, Ames, IA 50011 

Abstract 

ScqTe, was prepared by high-temperature solid-state techniques, and the structure was 

determined by single crystal X-ray diffraction to be monoclinic, Cc (No. 9, Z = 8) with a -

7.7576(1) A./) = 15.654(3) A, c= 17.283(3) A, and/?=90.01(3)'at 23 °C. The structure of 

metallic ScqTci can be viewed as columns built either from distorted 3 ><3 b.c.c. metal atoms 

or from distorted edge-sharing octahedra along cf that are joined via intercolumn bonds on 

opposite sides into 2D layers along B". A corrugated layer of Te atoms separates the metal 

layers in the c direction. This structure derives from the Ti^Se^ structure, with doubled a and 

h dimensions and a lower symmetry. Magnetic susceptibility measurements on Sc^Te^ 

show a substantially temperature-independent paramagnetism that is much smaller per metal 

atom than those for other scandium-rich tellurides or scandium metal. Extended HUckel band 

calculations reveal a clear distinction between high overlap populations for Sc-Sc 

interactions in the interior of the condensed metal structure and lower values for those on the 
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exterior that have Te neighbors. The distortion generally enhances the overlap populations of 

occupied states. 

Introduction 

The nature of mctal-mctal bonding has been an important aspcct of inorganic 

chemistry since the days of Pauling.' Metal-metal bonding in low-dimensional structures has 

been cited as a key component in synthesizing materials that contain metal-lattice 

modulations, or charge density waves.'^ The study of metal-metal bonding in early 

transition-metal compounds, chalcogenides especially, has received increased attention over 

the past 30 years. Voluminous expressions of lower-dimensional metal-metal bonding have 

been uncovered in such examples as TisChj"* - and TiXh"^ (Ch = S. Se), Ti 1,804,* TiiiSe:,** 

Ti^Tcj,'" HfjTe," HfjTe,,'* HfjSe,," Zr,Te.'^ Zr^Tej," andZrjTe.'" This chemistry has 

only recently been extended to the earliest and electron-poorest transition metals, namely 

Sc,Te'^ and RsTe, ® = Sc, Y).'* Structural and bonding relationships among these electron-

impoverished tellurides and the electron-richer Ti, Zr, Hf chalcogenides have given good 

insights regarding the importance of atom sizes, valence electron concentrations, and 

proportions in the determination of stability and structural features. 

Often little insight can be offered about the bonding or other features that drive the 

structural outcomes. One might think that well established interrelationships between 

electron counts, steric/matrix effects, and bond distances upon which the foundation of 

rational chemistry is based are too complex to be understood. However, the 

interrelationships previously outlined'^ for one case, Mf,Ch3, have proven valuable in 
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understanding the chemistry. A great many of the metal-rich phases can be described as 

chains of octahedra sharing vertices or edges that may be further condensed in diverse ways 

into infinite single, double, or quadruple chains. The majority (>95%) of these metal-rich 

phases share one common feature, a short repeat axis that appears to be determined primarily 

by the van der Waals radii of the anions. The metal-metal bonds repeat along this short axis 

as well, but these distances are usually determined by anion-anion contacts. Additionally, 

neighboring metal atoms often occupy alternating positions along the short axis, e.g., at 1/4 

and 3/4, and this arrangement may have a distinct impact on all metal-metal distances. As 

for ScnTe, vs TiH(S,Se)j, a cooperative result of the effects of metal-based electron counts 

(valence electron concentration per atom, VEC), anion sizes, and the degree of M-M bonding 

appear to be involved. An increase in VEC plus a decrease in anion size together afford more 

short metal-metal contacts and bonding. This effect seems to be at work in the present 

SctjTei, which is related to Ti.jSc;'' via a predicted discontinuous symmetry-lowering metal 

lattice distortion. This article also presents an analysis of the electronic structures and 

distortion wave that relates Ti^Se, to Sc^Te., the metal-richest binary telluride known among 

the electron-poorest transition metals. 

Experimental Section 

Syntheses. All materials were handled in a He-filled glovebox. The synthesis of 

ScqTe, began with the preparation of SciTes (NaCI type with disordered cation vacancies). 

The elements as received (Sc turnings 99.7%, Aldrich-APL; Te powder 99.99%, Alfa-

AESAR) were loaded in a 2:3 stoichiometry into a fused silica container. This was 
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evacuated, sealed, and heated to 450 °C for 12 hrs, and then to 900°C for 72 hours. Guinier 

film data confirmed the production of only the target product. This and the appropriate 

amount of scandium turnings to give a 9:2 stoichiometry were then palletized with a 

hydraulic press within a glovebo.x. The pellet was arc-melted in the glovebox for 20 seconds 

per side with a currcnt of 70 amps. A Guinier pattern of the product at this point revealed 

single phase (>95%) monoclinic Sc.,Tei. This was annealed at 1135X for 72 hours inside a 

welded tantalum container and then allowed to cool radiatively. It should be noted that still 

higher annealing temperatures resulted in reaction of the sample with and subsequent failure 

of the tantalum tubing. After annealing, powder diffraction data revealed that Sc.,Te2 had 

been obtained in evidently quantitative yield, and single crystals therein were selected for 

structural analysis. We have not been able to prepare a Y,Te2 analogue. 

Single Crystal DifTraction. Several black, irregularly shaped crystals were mounted 

inside 0.3-mm i.d. glass capillaries. Crystal qualities were checked with Laue photographs, 

and the best crystal was taken for a data set collection on a Bruker CCD difiractometer 

operating at room temperature with Mo Ka, radiation. Ninety refiection frames collected 

with 15-second exposures were analyzed and yielded an orthorhombic unit cell with a = 

7.821 A, A = 17.285 A, and c = 3.879 A, with a few weak reflections not included. This cell 

was the same as obtained earlier from diffractometers equipped with point detectors, from 

which a Ti,Se2-iype structure (Pnma) had been solved, but with much apparent disorder 

(some extreme ellipsoids). A set of ninety reflection frames recollected with 45-second 

exposures revealed additional reflections that doubled both the a and c axes and gave a = 

7.7576 (3) A, 6 = 15.654 (3) A, and c = 17.283 (3) A in the standard setting. One sphere of 
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reflections (±/», ± k, ±1) was collected to 20 - 56". The reflection frames when integrated 

and filtered with SAINTPLUS'*' gave 7239 reflections, of which 2141 were unique and 

observed (I > 3o,). Comparison of reflection intensities clearly demonstrated that there was 

no mirror plane normal to a (or c), which with the distorted supercell reduces the original 

Puma to monoclinic Cc. An absorption correction was applied with the packagc program 

SADABS.-" Additional observational conditions suggested the possible space group Cc. 

Structural models were obtained and successfully refined with the SHELXTL*' program. 

Some data collection and refinement parameters are given in Table 1. The refinement 

converged at Rl/wR2 = 0.031/0.098. For the subcell, 1069 observed unique reflections 

yielded Rl/wR2 = 0.030/0.088, while 1072 observed reflections unique to the superccll gave 

R\/wR2 = 0.040/0.110. On average, the subcell reflections were about 3 limes the intensity 

of the unique supercell data. The complete positional and isotropic-equivalent thermal 

parameters for Sc^Te, are given in Table 2. Additional data collection, refinement and 

anisotropic displacement parameters as well as all interatomic distances are given in the 

Supporting Information. These as well as the Fo/F^ listing are available from J.D.C. 

Properties. A weighed, powdered sample of -50 mg of Sc,,Te. was loaded inside the 

glovebox so that it was sandwiched between two close-fitting rods inside a 5 mm o.d. fused 

silica tube. Magnetizations of the samples were measured from 6 to 300 K at a field of 3 T 

with a Quantum Design MPMS SQUID magnetometer. Also, the magnetization versus field 

properties were checked at 80 K and 160 K, and the M values were found to intercept M = 0 

at H = 0, suggesting that the temperature dependencies are intrinsic, the same as detennined 
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earlier for the other scandium-rich phases. The data were corrected for the diamagnetism of 

both the sample holder and the atom cores. 

Resistivities of powdered -50-mg samples of Sc^Tei diluted with AI2O3 powder were 

measured with a "Q" apparatus at -35 MHz between 100 and 300 K. 

Band Calculations. E.xtcnded Hiickel band calculations were carried out within the 

tight-binding approximation" for the full structure of ScgTe, at 75 k-points spread out over 

the irreducible wedge. H„ parameters employed were those values iterated to charge 

consistency for SciTe (eV):'"' Sc 4s, -6.75; 4p -3.38; 3d, -6.12; Te 6s, -21.20; 6p, -12.00. 

Results and Discussion 

Structural Description. A ncar-[100] section of the Sc^Tci structure is shown in 

Figure 1, and the more significant (nearest neighbor) scandium-scandium distances are given 

in Table 3. The atom distribution can be viewed as corrugated multi-layers of scandium 

atoms (white) that stack normal to c and are separated into 2D sheets by isolated tellurium 

atoms (gray). The most conspicuous building block of the metal substructure is 

approximately a ID square column of scandium, three atoms in width and height, that 

extends infinitely along a. Adjoining columns are identical but displaced by all, which 

allows the display of all independent atom numbers as these alternate along the columns. 

This 3^3 cluster block can be described as the side-by-side condensation product of four 

infinite trans-edge-sharing chains of octahedra. (Note in the Figure that the shared edge 

(waist) and vertex positions alternate by all, with the waist of the octahedron assigned to the 

clearly shorter trans distance.) Similar infinite chains of condensed octahedra have been 
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useful in the earlier description of Sc-Sc bonding in SciTe, Sc^Tej, and SctCIiq,'^ where 

possible close-packed or condensed b.c.c. features are less apparent. Each column here is 

bonded to parallel units on opposed faces (at atoms 5, 6, 15, 16) by another chain of edge-

sharing octahedra to generate corrugated sheets of these columns normal to c. The latter 

connections, marked in Figure 1, range over 3.18 - 3.2') A, while edges on the opposing 

column faces (6-16 and 5-15) are much shorter, 3.05 A . The shortest metal-metal distance 

between sheets, 3.48 A (4-11), is marked in Figure 1, although the corresponding overlap 

population is relatively small (below). 

Significant distortions in this structure relative to Ti,,Sei occur along the individual 

columns, and these arc better seen in Figure 2 in which the chain a.\is (a) is horizontal. This 

pattern is comprised of four crystallographically distinct octahedra, two "squashed" (18, 9, 

13. 12, 15, 3; 17, 16, 11, 14, 10, 2) and two more regular octahedra (18, 11, 16, 14,10, 1; 17, 

12, 15,9, 13, 4), with the latter highlighted. The distances within one of each type of 

octahedron arc marked in Figure 2, those in the other pair being fairly similar. The Sc-Sc 

distances around the more regular octahedron vary from 3.1- 3.3 A, with waists of -3.5 A 

(9-12 or 13-15) and heights of 4.4 A (4-17). Distances around the "squashed" octahedra 

vary from 3.1 - 3.4 A, with shorter height distances of -3.5 A (marked, 2-17) and longer 

waists of -4.3 A (10-11, 14-16), along the chain, that is, compressed by about 0.8 A so that 

the height and waist proportions of the octahedra have been reversed but remain comparable. 

One regular and one "squashed" octahedron share a vertex (17,18) and are connected via two 

shared edges along <f to another such pair with the distortion reversed with respect to the first 

one. In this way, the regular octahedra in this view occupy opposed positions across the 
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chain, in concert with the alternation of "squashed" octahedra. Finally, the sides on these 

chains of octahedra are augmented by metal atoms (5,8; 6,7) that simultaneously cap faces of 

adjoining octahedra and "squashed" octahedra and defme bridges to the adjoining column. 

Figure 1. The distances to the shared vertices of the octahedra are fairly constant, slightly 

less than 3.4 A (5-17, 7-17, 6-18, 8-18). All tellurium atoms arc located within tricapped 

trigonal prismatic scandium figures, with Sc-Te distances in a 2.9-3.2 A range. Appropriate 

to the electron richness of this compound, all Te-Te distances are 4.0 A or greater and 

nonbonding. 

The parent from which this zigzag pattern of distorted octahedra can be derived is 

shown in Figure 3, the undistorted, or structurally averaged, Sc„Tc; that corresponds to the 

TiijSei-type structure.** Here the waists and heights of the octahedra are both -3.9 A, quite 

long for good bonding, and the overall column structure is just a simple but rather extensive 

condensation of these. The observed superstructure is achieved by splitting the five 

independent metal positions into four or two sites each, as keyed with a superscript for the 

former sites on the atom numbers in Table 2. The descent in space group symmetry from 

Pham for TiijSe, to Cc for Sc^Te, is not direct, but is predicted to require two steps," so the 

transition must be first order rather than continuous. The major displacements, marked on 

Figure 3 by arrows, occur along the short a axis, while neighboring columns displace out of 

phase so as to yield a doubled h axis as well. Figure 2. 

Physical Properties. Sc^Tej exhibits a paramagnetic susceptibility with a small 

temperature-dependence at the lowest temperatures, as shown in Figure 4 along with data for 

other metal-rich scandium phases for comparison, all as x/mole Sc. The temperature 
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dependence here is much less than observed for both ScjTe and ScgTej, and the result is quite 

Pauli-like from 50 - 300K. The room temperature susceptibility of scandium metal*' is two 

to four times greater than that for any of the scandium-rich tellurides investigated, with 

ScyTc; being the lowest. What is different is that the two other scandium-rich phases have 

greater temperature dependencies at lower temperatures. High-frequency measurements of 

the resistivity of the polycrystalline ScqTe, phase over 100 - 300 K show metallic behavior. 

The resistivity is -220 ^Q em at 298 K, four times that of the metal, with a temperature 

dependence of-0.57%K characteristic of a metallic compound. Neither X or P gave any 

evidence for a phase transition over the temperature regions studied. 

Theoretical Calculations. Although the metal-metal bonded nature of Sc^Te^ 

suggests delocalization of conduction electrons, the unusual distortions away from the more 

symmetrical Ti,Se2 type also suggest electronic driving forces. Band calculations seem 

necessary to understand this aspect better. Figure 5 shows the total DOS and the total Sc-Sc 

COOP curve (sum of overlap-weighted bond populations) for ScqTe, as functions of energy. 

As is usual for such compounds, the Fermi level is located on the low energy side of a large 

conduction band that is composed almost entirely of scandium d and s states. The COOP 

curve shows that these are highly bonding up to and beyond Ep, which is typical for these 

electron-deficient compounds. Figure 5 suggests the valence electrons are delocalized within 

a broad conduction band, but it does not give any hint about the distortion. 

We have already seen many examples in which overlap populations may not vary 

inversely with metal-metal distances, particularly when their locations within a low 

dimensional network are distinctly different.However, an analysis of all of the individual 
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distances and Sc-Sc overlap populations in this complex structure would be cumbersome. 

Table 3 lists the Sc-Sc distances under 4.0 A and the overlap populations for those with 

values of the latter above 0.02, along with a key to describe the location of each in the 

structure. The Sc-Sc overlap populations are listed in descending order, and the first 20 to 

30, all of which lie within the chains, parallel increases in distances fairly well. Notable 

deviations then begin to occur everywhere on the list, depending on the environment of the 

metal-metal bond. For example, the overlap population for the atom pair 7-12 (0.182) 

occurs very low on the list considering its distance (3.11 A), but this bond occurs on the 

periphery of the 2D sheet. Contrastingly, that for 5-6 (0.214) lies high on the list for its 

distance (3.29 A), but this bond occurs between columns within the 2D sheet. This 

correlation is summarized in Figure 6, part A, where all of the independent Sc-Sc overlap 

populations are plotted as a function of distance. The data fall basically into two distinct 

populations, corresponding to either internal or surface (exterior) Sc-Sc bonding. Those for 

internal Sc-Sc bonds in and between columns, labeled il and i2, respectively (following 

Table 3) together with data for the shortest axial repeats i3 all fall on the upper empirical 

curve with higher overlap populations for the corresponding distances. The surface and 

interlayer (exterior) Sc~Sc bonds with Te neighbors (el and e2, respectively) occur on a 

lower curve and have lower overlap populations for their distances. Although we have seen 

such qualitatively parallel trends before,'^-'" this clear segregation of the Sc-Sc bonds in 

ScqTe^ into internal and external bond classes has never been quite so conspicuous and 

compelling. The usual explanation has been that metal-based electrons on Sc atoms with 

anionic tellurium near neighbors are repelled or, equivalently, that the d states on these metal 
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atoms are raised (become relatively oxidized) through mixing with Te states. Thus, metal 

bonds located on the external part of the aggregate follow a different bond order-bond length 

relationship than those located within the metal aggregates. 

Since the Sc^Te, structure is a distorted version of the Ti^Se, structure t>pe, it seemed 

necessar)' to determine whether there are conspicuous bonding differences between the two 

structure types that might justify the distortion. The same calculations were therefore 

performed for Sc^Te, with an undistorted, or structurally averaged. Ti^Sci-type structure. The 

lower half (B) of Figure 6 shows the same plot of Sc-Sc overlap populations versus 

distances, with the number of data points greatly reduced because of the higher symmetry of 

the structure. Again, the Sc-Sc bonding is differentiated into the two categories, interior and 

exterior distances, but to a lesser extent. A significant difterence is that some of the 

populations for internal Sc-Sc bonding along the short a axis (grouped as i3) arc relatively 

large, given their distances, compared with the other internal bonding (il, i2) and with that in 

the real structure. This distinction was noted as well in the electron-poorer compounds 

SciTe and Sc,Tej with - ID blades and 2D sheets, respectively. The distortion essentially 

disproportionates the strong -3.9 A bonds along the short axis, a, into shorter and stronger at 

-3.S A bonds well up on the curve in Figure 6(A) plus longer inconsequential separations 

near 4.3 A (off-scale). Figure 2. Such distortions should be spontaneous given the 

logarithmic dependence of bond order on distance if the elastic energies and bonding changes 

elsewhere in the structure are not too important. The distortion in general raises the curve of 

overlap populations as a function of distance, curve i 1, i2 in Figure 6B lying closer to el, the 

exterior populations in the real structure. Figure 6A, than to curve defined by interior bonding 



www.manaraa.com

77 

il, i2, i3. In other words, the distortion has logically emptied the moderate or less bonding 

states in the 119862 arrangement and lowered the energy of those that are more bonding. The 

effects are difficult to discern with only a collective COOP curve comparison. There are 

appreciable changes during this distortion, however, and over 80 distinct Sc-Sc contacts 

would need separate analysis. The s>Tnmctr>- reduction found for SC9TC2 relative to a Ti^Scj-

type aristotype may take place at elevated temperatures, but it must occur above 1135 

where the crystals were grown. 

Such a differentiation does not occur for Sc^Te,, which occurs in a TinScj structure 

type but with clear responses to the larger anion and smaller number of valence electrons. On 

the other hand, the interior metal positions for Y^Te, refine with somewhat extreme thermal 

ellipsoids suggestive of a missing superstructure, but no evidence for this can be found.*'* 

Some incommensurate behavior may be possible. 

Conclusions. The structure of ScqTe2 consists of distorted 3^3 columns of scandium 

metal that extend infinitely down the a axis, and are joined laterally into 2D layers along the 

b axis. A corrugated layer of tellurium atoms separates the rumpled metal layers in the c 

direction. The Sc^Te, structure is the result of distortion of the TiqSe, structure type with 

doubled a and b axes and alternating long and short Sc-Sc distances along the columns. 

Extended Hiickel calculations show that the distortion to lowered symmetry generates more 

regular Sc-Sc bond order - distance relationships (Figure 6A) that clearly distinguish 

between inner and outer positions on the metal columns or layers. 
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Table 1. Single Crystal X-ray Data Collection and Refinement Parameters for Sc^Te^. 

Formula weight 659.84 

Space group, Z C c  (No. 9), 8 

Lattice parameters and cell volume 

rt(A) 7.7576(1) 

b { K )  15.654(3) 

c ( k )  17.283(3) 

/?(deg.) 90.01(3) 

2098.8(6) 

<aic (g/cm^) 4.176 

// (Mo K„)(cm ') 108.10 

Residuals R 1, w/?2 (x 100)" 3.1; 9.8 
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Table 2. Positional and Isotropic-Equivalent Thermal Parameters for Sc^Tc;. 

Atom" x -
Uc^(A=)'' 

Tel 0.96968(8) 0.38090(4) 0.98396(4) 0.0080(2) 

Te2 0.96841(9) 0.62951(3) 0.88165(4) 0.0061(2) 

Te3 0.46538(9) 0.62949(3) 0.88165(4) 0.0062(2) 

Te4 0.46386(8) 0.38088(4) 0.98397(4) 0.0082(2) 

Scl' 0.7179(3) 0.4849( 1) 0.8945(1) 0.0074(5) 

Sc2' 0.2174(3) 0.4759(1) 0.8819(2) 0.0073(5) 

Sc3' 0.2178(4) 0.2260(1) 0.9855(2) 0.0076(5) 

Sc4' 0.2178(4) 0.7350(1) 0.9743(2) 0.0080(5) 

Sc5- 0.7156(3) 0.6808( 1) 0.7633(2) 0.0083(5) 

Sc6- 0.7152(3) 0.4316(2) 0.1025(2) 0.0076(5) 

Sc7- 0.2155(3) 0.4245(1) 0.1089(1) 0.0090(5) 

Sc8- 0.2157(3) 0.6741(1) 0.7576(1) 0.0071(5) 

Sc9^ 0.9908(3) 0.5740(1) 0.0469(1) 0.0102(5) 

SclO' 0.9905(3) 0.8247(1) 0.8200(1) 0.0093(5) 

Sell-' 0.9409(3) 0.3247(1) 0.8198(1) 0.0085(5) 

Scl 2^ 0.4406(3) 0.5740(1) 0.0470( 1) 0.0098(5) 

Scl 3' 0.4918(3) 0.2624( 1) 0.1272(1) 0.0101(5) 

Scl 4^ 0.4927(3) 0.5120(1) 0.7389(1) 0.0109(5) 

Scl 5^ 0.9389(3) 0.2623(1) 0.1272(1) 0.0080(5) 

Scl 6' 0.9375(3) 0.4881(1) 0.2388(1) 0.0081(5) 

Scl 7' 0.2166(4) 0.6147(1) 0.1994(2) 0.0078(4) 

Scl 8' 0.7166(4) 0.3651(1) 0.6660(2) 0.0089(4) 

" Superscripts 1-5 denote corresponding metal positions within the TiqSe^ structure. 
» U„ = (1/3)2,2,U„a,-a,'5,a,. 
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Tabic 3. Sc-Sc Distances (A) and Corresponding Overlap Populations (OP). 

Atom I Atom 2 Distance OP i,e« Atom 1 Atom 2 Distance OP i.e-

7 8 3.00 0.363 il 14 16 3.45 0.153 i3 

14 17 3.00 0.306 i2 13 15 3.47 0.149 i3 

13 18 3.00 0.305 i2 10 11 3.49 0.145 i3 

15 18 3.01 0.298 i2 9 12 3.49 0.142 i3 

16 17 3.01 0.298 i2 6 12 3.23 U.141 cl 

6 16 3.05 0.274 il 6 9 3.24 0.140 el 

5 15 3.05 0.273 il 5 10 3.25 0.137 cl 

6 14 3.05 0.273 il 5 11 3.25 0.137 cl 

9 18 3.11 0.272 i2 4 15 3.18 0.137 cl 

5 13 3.06 0.272 il 5 16 3.18 0.133 el 

12 18 3.12 0.268 i2 5 14 3.19 0.132 cl 

10 17 3.12 0.267 i2 4 13 3.20 0.130 cl 

11 17 3.13 0.263 i2 6 15 3.20 0.130 cl 

16 18 3.13 0.233 i2 6 13 3.19 0.130 cl 

15 17 3.14 0.229 i2 1 16 3.21 0.127 cl 

14 18 3.15 0.226 i2 1 14 3.24 0.120 cl 

13 17 3.15 0.224 i2 3 13 3.29 0.114 cl 

5 6 3.29 0.214 il 4 12 3.30 0.112 cl 

12 17 3.22 0.213 i2 4 9 3.32 0.108 el 

9 17 3.23 0.209 i2 1 11 3.31 0.108 cl 

11 18 3.24 0.206 |2 3 15 3.32 0.108 el 

8 13 3.26 0.204 il 2 14 3.32 0.106 el 

11 16 3.25 0.204 il 3 9 3.36 0.104 el 

7 14 3.26 0.203 il 1 10 3.33 0.104 el 

8 15 3.27 0.202 it 2 10 3.35 0.104 el 

10 14 3.25 0.202 i2 9 16 3.60 0.103 i2 

10 18 3.25 0.201 i2 12 14 3.60 0.103 i2 

7 16 3.27 0.201 il 7 13 3.34 0.102 el 

12 15 3.26 0.200 i2 8 14 3.34 O.lOO el 

9 13 3.26 0.199 i2 2 n 3.37 0.100 el 

7 12 3.11 0.182 el 3 12 3.38 0.100 el 
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Table 3. (continued) 

7 9 3.11 0.181 el 2 16 3.34 O.lOO el 

7 17 3.36 0.179 i2 7 15 3.34 O.lOO el 

8 11 3.13 0.176 el 11 13 3.62 0.100 i2 

6 18 3.37 0.176 i2 10 15 3.62 0.099 i2 

10 8 3.13 0.175 el 8 16 3.35 0.098 el 

5 17 3.39 0.171 i2 17 18 3.93 0.041 i3 

8 18 3.38 0.170 i2 4 11 3.48 0.025 e2 

3 18 3.43 0.164 i2 4 10 3.49 0.024 e2 

2 17 3.46 0.155 i2 

" i = interior Sc-Sc bond; il - inside 3x3 column ; i2 - inside the octahedral chain shared 
between columns; i3 - along short axis repeat; e = exterior; el - on exterior of 3 * 3 
block; e2 - interlayer. 
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Supporting Information 
ScqTe,: A 2D Distortion Wave in the Scandium-Richest Telluride 

Paul A. Maggard and John D. Corbett 

Table SI. Single Crystal X-ray Data Collection and Refinement Parameters for Sc,Te;. 

Formula weight 659.84 

Space group, Z Cc (No. 9), 8 

Secondary ext. 0.00016(4) 

- R1 = EIIFJ - IFJI/SIFJ; wR2 = w = \/(a,'y. 
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Table S2. Uy (A*) values for ScqTe^. 

Atom Uu- U:: U33 U,3 U:3 

Tel 0.0073(3) 0.0079(4) 0.0089(5) -0.0016(3) -0.0005(3) 0.0002(3) 

Te2 0.0061(4) 0.0055(3) 0.0062(4) -0.0015(3) 0.0004(3) 0.0003(3) 

Te3 0.0065(4) 0.0057(3) 0.0060(4) -0.0015(3) 0.0001(3) 0.0003(3) 

Te4 U.U081(4) 0.0077(4) 0.0088(5) -0.0017(3) -0.u008(3) 0.0005(3) 

Scl 0.0064(8) 0.0080(8) 0.0078(1) 0.0010(8) -0.0017(8) 0.0001(8) 

Sc2 0.0055(8) 0.0077(8) 0.009(1) 0.0009(7) 0.0003(8) 0.0014(7) 

Sc3 0.0085(5) 0.0063(8) 0.008(1) -0.0020(7) -0.0019(8) 0.0013(8) 

Sc4 0.0092(8) 0.0049(8) 0.010(1) -0.0020(7) 0.0008(8) -0.0004(8) 

Sc5 0.0082(9) 0.0078(9) 0.009(1) 0.0023(8) -0.0001(8) 0.0000(8) 

Sc6 0.0092(9) 0.0041(9) 0.010(1) 0.0015(8) 0.0000(8) -0.0002(7) 

Sc7 0.0083(9) 0.0054(9) 0.013(1) -0.0002(8) 0.0004(9) -0.0008(7) 

Sc8 0.0091(9) 0.0062(9) 0.006(1) -0.0011(8) -0.0011(8) -0.0004(7) 

Sc9 0.0137(2) 0.0070(8) 0.0108(9) 0.0010(6) -0.0012(9) -0.0006(6) 

SclO 0.0147(1) 0.0065(8) 0.0067(9) 0.0001(6) -0.0008(9) 0.0013(6) 

Sell 0.012(1) 0.0059(8) 0.0067(9) -0.0004(6) 0.0001(9) -0.0008(6) 

Scl2 0.012(1) 0.0064(8) 0.0105(9) 0.0013(6) -0.0008(9) -0.0005(6) 

Scl3 0.0154(1) 0.0080(9) 0.0079(9) -0.0005(6) 0.001(1) -0.0001(6) 

Scl4 0.016(1) 0.0050(8) 0.0103(9) -0.0003(6) 0,003(1) 0.0019(7) 

Scl5 0.009(1) 0.0079(9) 0.0070(8) -0.0001(6) -0.0032(9) 0.0004(6) 

Scl6 0.009(1) 0.0052(8) 0.0105(9) 0.0002(6) -0.0032(9) -0.0006(6) 

Scl 7 0.0074(7) 0.0061(8) 0.010(1) -0.0010(6) -0.0027(8) 0.0007(6) 

Scl 8 0.0084(6) 0.0066(8) 0.012(1) 0.0020(7) 0.0011(8) 0.0010(6) 

- T = exp[-2ii-(U„h-a*- + U^k-b" + Ujjl'c*- + 2U,jhka*b* + 2U,jhla*c* + 2U:3klb*c*)]. 
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Table S3. Interatomic Distances (< 4.0 A) for Sc^Te,. 

Tel Scl 2.976(2) Te4 Sc4 3.021(2) Sc2 Scl4 3.316(4) 

Sc2 3.002(3) Sc6 2.937(3) Scl6 3.339(3) 

Sc3 3.096(2) Sc7 2.974(3) Scl 7 3.458(4) 

Sc4 3.011(2) SclO 2.975(3) 

Sc6 2.953(3) Scl2 3.219(2) Sc3 Tel 3.096(2) 

Sc7 2.961(3) Scl3 3.100(2) re2 3.047(3) 

Sc9 3.217(2) Te3 3.056(3) 

Sell 2.979(2) Scl Tel 2.976(2) Te4 3.086(2) 

Scl5 3.103(2) Te2 2.991(2) Sc4 3.886(4) 

Te3 3.001(2) Sc5 3.905(4) 

Te2 Scl 2.991(2) Te4 2.988(3) Sc7 3.769(4) 

Sc2 3.084(2) Sc2 3.891(4) Sc9 3.357(3) 

Sc3 3.047(3) Sc2 3.884(4) SclO 3.879(4) 

Sc4 3.005(3) Sc5 3.814(4) Sell 3.899(4) 

Sc5 2.946(3) Sc6 3.690(4) Scl2 3.378(3) 

Sc8 2.961(3) Sc9 3.655(3) Scl3 3.292(3) 

Sc9 2.990(3) SclO 3.327(3) Sel5 3.316(4) 

SclO 3.240(2) Sell 3.310(3) Scl 8 3.430(4) 

Scl 6 3.088(2) Scl2 3.676(3) 

Scl4 3.235(4) Sc4 Tel 3.011(2) 

Te3 Scl 3.001(2) Scl6 3.213(4) Te2 3.005(3) 

Sc2 3.079(2) Te3 2.997(3) 

Sc3 3.056(3) Sc2 Tel 3.002(3) Te4 3.021(2) 

Sc4 2.997(3) Te2 3.084(2) Sc3 3.886(4) 

Sc5 2.932(3) Tc3 3.079(2) Sc6 3.792(4) 

Sc8 2.973(3) Te4 2.997(2) Sc8 3.864(4) 

Sell 3.243(2) Scl 3.884(4) Sc9 3.320(3) 

Scl2 2.992(3) Scl 3.891(4) SclO 3.492(3) 

Scl4 3.084(2) Sc8 3.774(4) Sell 3.478(3) 

Sc9 3.684(3) Scl2 3.303(3) 

Te4 Scl 2.988(3) SclO 3.352(3) Scl 3 3.200(4) 

Sc2 2.997(2) Sell 3.370(3) Scl5 3.179(3) 

Sc3 3.086(2) Scl2 3.674(3) 
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Sc5 

Sc6 

Sc7 

Te2 

Te3 

Scl 

Sc3 

Sc6 

Sc8 

Sc8 

SclO 

Sell 

Scl3 

Scl4 

Scl5 

SclO 

Scl 7 

Tel 

Tc4 

Scl 

Sc4 

Sc5 

Sc7 

Sc7 

Sc9 

Scl2 

Scl3 

Scl4 

Scl5 

Scl6 

Scl8 

Tel 

Te4 

2.946(3 

2.932(3 

3.814(4 

3.905(4 

3.289(2 

3.881(4 

3.882(4 

3.253(3 

3.251(3 

3.055(4 

3.185(3 

3.054(3 

3.183(3 

3.386(3 

2.953(3 

2.937(3 

3.690(4 

3.792(4 

3.289(2 

3.880(4 

3.884(4 

3.235(3 

3.230(3 

3.193(3 

3.053(3 

3.195(3 

3.051(3 

3.368(3 

2.961(3 

2.974(3 

Sc7 

Sc8 

Sc9 

Sc3 

Sc6 

Sc6 

Sc8 

Sc9 

Scl2 

Scl3 

Scl4 

Scl5 

Scl6 

Scl7 

Te2 

Te3 

Sc2 

Sc4 

Sc5 

Sc5 

Sc7 

SclO 

Sell 

Scl3 

Scl4 

Sel5 

Scl6 

ScI8 

Tel 

Tc2 

Scl 

Sc2 

Sc3 

3.769(4 

3.884(4 

3.880(4 

2.997(2 

3.109(3 

3.110(3 

3.336(3 

3.264(3 

3.340(3 

3.268(3 

3.363(3 

2.961(3 

2.973(3 

3.774(4 

3.864(4 

3.882(4 

3.881(4 

2.997(2 

3.126(3 

3.125(3 

3.264(3 

3.340(3 

3.269(3 

3.347(3 

3.382(3 

3.217(2 

2.990(3 

3.655(3 

3.684(3 

3.357(3 

Sc9 

SclO 

Sell 

Sc4 

Sc6 

Sc7 

Scl2 

Scl3 

Scl6 

Scl7 

Scl8 

Te2 

Te4 

Scl 

Sc2 

Sc3 

Sc4 

Sc5 

Sc8 

Sell 

Scl4 

Scl5 

Scl7 

Scl8 

Tel 

Te3 

Scl 

Sc2 

Sc3 

Sc4 

Sc5 

Sc8 

SclO 

3.320(3 

3.235(3 

3.109(3 

3.489(2 

3.260(3 

3.604(3 

3.229(4 

3.110(3 

3.240(2 

2.975(3 

3.327(3 

3.352(3 

3.879(4 

3.492(3 

3.253(3 

3.126(3 

3.494(2 

3.251(3 

3.622(3 

3.124(3 

3.249(3 

2.979(2 

3.243(2 

3.310(3 

3.370(3 

3.899(4 

3.478(3 

3.251(3 

3.125(3 

3.494(2 
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Scl 

Scl2 

Scl3 

Scl3 

Scl6 

Scl7 

Scl8 

Tc3 

Te4 

Scl 

Sc2 

Sc3 

Sc4 

Sc6 

Sc7 

Sc9 

Scl4 

Scl5 

Scl7 

Scl8 

Te4 

Sc3 

Sc4 

Sc5 

Sc6 

Sc7 

Sc8 

Sc9 

Sell 

Scl5 

Scl7 

Scl8 

3.619(3 

3.248(3 

3.131(3 

3.239(3 

2.992(3 

3.219(2 

3.676(3 

3.674(4 

3.378(3 

3.303(3 

3.230(3 

3.110(3 

3.489(2 

3.603(3 

3.257(3 

3.220(3 

3.119(3 

3.100(2 

3.292(3 

3.200(4 

3.055(4 

3.193(3 

3.336(3 

3.264(3 

3.260(3 

3.619(3 

3.468(3 

3.154(3 

2.998(3 

Scl4 

Scl5 

Scl6 

Te3 

Scl 

Sc2 

Sc5 

Sc6 

Sc7 

Sc8 

SclO 

Scl2 

Scl6 

Scl7 

Scl 8 

Tel 

Sc3 

Sc4 

Sc5 

Sc6 

Sc7 

Sc8 

SclO 

Scl2 

Scl3 

Scl 7 

Scl 8 

Te2 

Scl 

Sc2 

Sc5 

Sc6 

Sc7 

3.084(2) 

3.235(4) 

3.316(4) 

3.185(3) 

3.053(3) 

3.264(3) 

3.340(3) 

3.251(3) 

3.603(3) 

3.451(2) 

2.999(3) 

3.146(3) 

3.103(2) 

3.316(4) 

3.179(3) 

3.054(3) 

3.195(3) 

3.340(3) 

3.269(3) 

3.622(3) 

3.257(3) 

3.468(3) 

3.142(3) 

3.012(3) 

3.088(2) 

3.213(4) 

3.339(3) 

3.183(3) 

3.051(3) 

3.268(3) 

Scl6 

Scl7 

Scl8 

Sc8 

Sc9 

Sell 

Scl4 

Scl7 

Scl8 

Sc2 

Sc5 

Sc7 

Sc9 

SclO 

Sell 

Scl2 

Scl3 

Scl4 

Scl5 

Scl6 

Scl8 

Sc3 

Sc6 

Sc8 

Sc9 

SclO 

Sell 

Scl2 

Sel3 

Scl4 

Scl5 

Scl6 

Scl 7 

3.347(3 

3.604(3 

3.248(3 

3.451(2 

3.013(3 

3.131(3 

3.458(4 

3.386(3 

3.363(3 

3.229(4 

3.124(3 

3.131(3 

3.220(3 

3.154(3 

2.999(3 

3.142(3 

3.013(3 

3.934(4 

3.430(4 

3.368(3 

3.382(3 

3.110(3 

3.249(3 

3.239(3 

3.119(3 

2.998(3 

3.146(3 

3.012(3 

3.131(3 

3.934(4 
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1. -[100] section of the unit cell of monoclinic Sc9Te2. The pairs of similar 
but independent metal atoms within the 3 x 3 columns that alternate 
down the short a axis (1—2, 3-4, 5-8,6-7,9-12, 10-11, 13-15, 14-16, 
17—18), as marked on separate columns. White atoms are scandium; gray 
atoms are tellurium. 
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Allemaling Short Axis 
Length 

Figure 2. The repeating patterns of shared, distorted, octahedra along the short a axis of Sc^Tej drawn with 99% 
probability thermal ellipsoids and distances marked in A. The darker bonds emphasize the zigzag 
arrangement of octahedra, and the arcs, the alternating octahedral waist (A) and height (B) pattern. 
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Figure 3. A view along the short a  axis of the ideal undistorted, or structurally averaged, Sc^Tcj in the orthorhombic 
Ti,Se, structure type. The average distances of the waist and height dimensions of the octahedra are marked as 
well as the metal displacement pattern that produces the observed distorted structure in Figure 2. 
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Figure 4. Molar magnetic susceptibilities per scandium versus temperature for Sc^Tej, other 
scandium-rich tellurides, and the metal. 
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Figure 5. Total densities of states (DOS) (left) and Sc-Sc crystal orbital overlap populations (COOP) 
(right) curves for Sc^Te^. The minute Te contributions (dashed) are projected out in the 
former. 
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Figure 6. Sc-Sc overlap populations versus distances for the real Sc9Te2 structure 
(A) and the equivalent undistorted TiqScj aristotype (B). Note the clear 
distinction in A between interior (i) and exterior (e) bond populations 
within the layer of bridged columns. The categories i3 and e2 refer to 
values along tlie short axis and between layers, respectively (see Table 3). 
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PART 2. RELATED TERNARY PHASES 
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CHAPTER 5. ScjNi Je.: SYNTHESIS, STRUCTURE, AND 
BONDING OF A METAL-METAL BONDED CHAIN PHASE, A 

RELATIVE OF GdjMnlj 

A paper published in Inorganic Chemistry 

Inorg. Chem. 1999, 38, 1945 

Paul A. Maggard and John D. Corbett 

Department of Chemistry, Iowa State University, Ames, IA 50011 

Abstract 

Sc^NijTe, has been prepared by high-temperature solid-state techniques, and the 

structure determined at 23 X by single crystal and powder X-ray diffraction methods to be 

orthorhombic, Pmwu (No. 62) with Z = 4, </= 17.862(1), A = 3.9533(3), c = 10.6398(6) A. 

The structure contains pairs of eclipsed zigzag chains of nickel atoms that are sheathed by 

scandium atoms and demarcated from other chains by tellurium atoms. The structure is 

isotypic with that of Hf^Co,.,?, but shifted atomic positions and a different ordering of the 

main group and late transition elements give it a clearly 1D character. The di(Terences in 

dimensionality, ordering and bonding are discussed, and comparisons are made with 

Gd^Mnl, and rare-earth-metal cluster halides in general. 

Introduction 

The plethora of new metal-rich chalcogenide phases among the early transition metals 

have been important for understanding the expression of and interrelationships between 



www.manaraa.com

98 

metal-metal bonding features among these many compounds. Incorporation of late 

transition metals has long been known to stabilize both metal-rich halides' and chalcogenides 

that are otherwise unstable with respect to electron count and other binary phases. Recently 

reported ternary chalcogenides and phosphides of this type include Ta.,M,S6,- TanM^Se, (M 

- Fc. Co, Ni).^ Ta^NiSc, (M - Co, Ni),' Hf,MTe, (M = Co, Ni, Ru),' Zr,M,P, (.M = Co, Ni),-

Hf,CO|.,P, „ (0 < .V < 0.5),' HfjNiP," and ScNiP." 

The study of bonding features in metal-rich chalcogenides of the early transition 

metals has only recently been extended to group 3 examples, namely, to ScjTe'" and ScsTe,." 

Their structural and bonding relationships to those of later electron-richer analogues allow 

one to assess the importance of atom sizes, valence electron concentrations, and 

metal-to-nonmetal proportions in the structure and bonding. The smaller number of metal-

based electrons for the earlier transition metals appears to force a reduction in the 

metal-metal framework dimensionality, as shown in particular for Sc*Te, and YsTe,. 

relatives of TinChj, Ch = S, Se.'- '• Stoichiometry and efficient packing apparently dictate 

that some metal atom pairs may be in close proximity even though theory indicates that there 

are relatively few or no electrons involved in their bonding, i.e., a classical result of matrix 

effects. 

Metal-rich chalcogenides of scandium and yttrium also show some notable contrasts 

with parallel structures and stoichiometries of their most reduced halides. The latter are 

known only with proportionately more nonmetal atoms. Twice as many halogen atoms per 

chalcogen would be expected for the same electron count per metal atom, and in fact 

somewhat more (2<X/R<3) are observed in isolated cluster halides. Condensed chains or 
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tetramers built of recognizable octahedra span a range of 1 < < 2. The halides 

structurally serve to sheath the metal cores, in all cases leading to clearer defmition of the 

building blocks. Furthermore, with few exceptions, the known reduced halides are so 

electron-poor that they also require interstitial heteroatoms (SciCli^C, Y4I5C, etc.) which 

afford centra! bonding and additional bonding electrons. 

In analogy with studies on later transition-metal-chalcogen systems, this article 

presents the first results of the e.xpansion of this chemistry to ternary systems of scandium, in 

this case with the incorporation of nickel. The early-late transition metal bonding involved 

appears to reflect the extra stability of such polar interactions that were first noted by Brewer 

and Wengcrt." Mixed-metal features in chalcogenides and phosphides are largely 

multicapped trigonal prisms of the earlier transition metal centered by a late transition metal. 

The nonmetals in these generally prefer a similar environment, a tricapped trigonal prism 

(tetrakaidecahedron). In some ternary phases, the late-transition metal and nonmetal (e.g., Co 

and P, or Ni and S) may exhibit unusual mixed metal/nonmetal occupancies of the same sites, 

as in (HfjCoi.jPj ,),• evidently because of their similar sizes and site preferences. In the title 

compound ScjNiiTej, the late-transition metal and the nonmetal have markedly different 

sizes, and mixed occupancy is not a factor. Furthermore, the relative electron deficiency of 

the host metal and the larger anion ensure a cooperative reduction in dimensionality of the 

metal-metal bonded framework as compared with that in Hf,Co,.,P3 „ etc. The new 

ScjNijTe^ is significant in that it represents the extension of early-late transition metal 

chemistry to ternary chalcogenides of the electron-poorer scandium. 
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Experimental Section 

All materials were handled in He-filled or Ni-filled gloveboxes to reduce 

contamination by adventitious impurities. The elements were used as received; Sc turnings, 

Aldrich 99.7%; Te powder, Aldrich 99.99%; Ni powder, Alfa 99.95%. The synthesis of 

SCjNiTci began with the preparation of Sc;Te; as described previously.'" The SciTe;, Ni, 

and Sc to give a 3:1:1 (Sc:Ni:Te) stoichiometry were first loaded into a tantalum tube 

welded at one end. The other end of the tube was then crimped shut inside the glovebox, 

transferred to an arc-welder, and the tube sealed afier the welder had been evacuated and 

backfilled with argon. Such containers were then scaled inside evacuated and well flamed 

fused silica jackets, heated at 1000 X for 24 hours, cooled to 700 X at 5 °C/hr, and then 

allowed to cool in air. Guinier powder diffraction on the product of the first reaction showed 

what was subsequently found to be Sc^NijTe, had been obtained in 2 80% yield, plus ScTe. 

Further reactions with the indicated 5:2:2 stoichiometry at higher or lower temperatures only 

yielded a neighboring ternary phase ScoNiTe,,'" or ScTc and ScNi. Also, arc-melting 

reactions at the 5:2:2 composition did not yield Sc5Ni2Tc2. But reactions loaded oiT-

stoichiometry (-ScjNiTe) yielded higher quantities of Sc^NiiTe,, evidently because some Ni 

had been lost into the container in the former reactions. The same synthetic techniques with 

Fe, Co, and Cu (M) as the late transition metal did not yield any of the analogous Sc5M2Te2. 

Powder X-ray DifTraction. The powder diffraction patterns of Sc^NiTe^ were 

obtained with the aid of an Enraf-Nonius Guinier powder camera and monochromatic Cu Kat 

radiation. The samples were powdered, mixed with standard silicon (NIST), and placed 

between two strips of cellophane tape on a frame that mounted on the sample rotation motor. 
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Lattice parameters were obtained with the aid of least squares refinement of 58 indexed lines 

with 20 values calibrated by a nonlinear fit to the positions of the standard Si lines (Table 1). 

Single crystal diffraction. Several irregularly shaped, silvery crystals were mounted 

inside 0.3 mm i.d. glass capillaries that were sealed off and mounted on metal pins. Their 

quality was chccked by means of Laue photographs. A diffraction data set for the best 

crystal was measured on a Rigaku AFC6R difTractometer (monochromated Mo Ktti 

radiation) at room temperature. Twenty-five centered reflections gathered from a random 

search were used to determine provisional lattice constants and the crystal system. Two 

octants of data were collected (//. k. ±1) to 20m„ = 60and corrected for Lorentz and 

polarization effects. The data further corrected for absorption with the aid of two i|;-scans. 

Of 4627 measured reflections, 1938 had I >3o{l) and 653 of these were unique. Extinction 

conditions and statistical evidence for ccntricity indicated one possible space group, Pnma. 

The structure was solved by direct methods (SHELXS' ) and refined with the package 

TEXSAN'" in this space group. After isotropic refinement, the data averaged with = 

9.2%, and the final anisotropic refinement converged at R{F)IR^ = 3.2/3.2% for the 

composition Sc5Ni2Te2. Some data for these processes are listed in Table I, and the atomic 

positions and isotropic-equivalent temperature factors arc given in Table 2. Additional data 

collection and refinement parameters, the anisotropic displacement parameters, and a 

complete distance list are in the Supporting Information. These as well as the FJF^ listing 

are also available from J.D.C. 

Band Calculations. Extended Hiickel calculations were carried out within the tight-

binding approximation'^ for the full structure of ScsNiiTe2 at 48 k-points spread out over the 
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irreducible wedge. H„ parameters employed were the values iterated to charge consistency 

for Sc from Sc,Te, and for Ni from Sc^NiTei (eV): Sc: 4s, -6.75; 4p, -3.38; 3d, -6.12;'" Ni: 

4s, -5.58; 4p, -2.41; 3d, -7.82;"" Te: 6s, -21.20; 6p, -12.00.'° Very similar energies were 

also obtained for the first two from charge iteration on ScNi (CsC! type). The charge 

iteration for Ni gave much more suitable results for this polar compound than those from 

density functional theory (-8.13, -4.18, -12.40 eV, respectively-"). 

Results and Discussion 

Structural Description. A near-[010] section of the Sc^NiiTe, structure viewed 

along the short 3.95 A a.\is is given in Figure 1. The atom distribution can be viewed as 

pairs of extended zig-zag chains of nickel (black) that are sheathed by scandium (open) and 

are in tum well separated by single tellurium atoms (grey). The shortest distance between 

separate metal chains, </(Sc2-Sc3) = 3.68 A (marked), is at best a weak interaction (below). 

Figure 2 illustrates the repeat unit in one chain along with atom labels and distances with 

appreciable overlap populations (vide infra). To help understand the structure. Figure 3 

shows a side view of one-half of the composite chain as viewed more or less along [301 ], 

Figure I. The repeat units here are rectangular scandium pyramids [Sc2, Scl(x2), Sc4(x2) 

and Sc3, Sc4 (x2), Sc5 (x2)] (one is highlighted) that share Sc4-Sc4 edges in pairs and 

Scl-Sc4-Sc5 edges infinitely along B. Each rectangular pyramid has a nickel atom 0.54 A 

outside of the base. Two of these composites are then assembled base-to-base with a relative 

displacement oibH to generate the full chains seen in Figures 1 and 2. This assembly 

generates additional Scl-Sc5 (top and bottom) and Sc4-Sc4 bonds across the Figure plus the 
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pair of parallel zig-zag chains of nickel that run down the central channel of the chain. The 

Ni-Ni distance within the zig-zag chains is 2.66 A (the single bond distance is given as 2.31 

A-') while the closest separation between the eclipsed Ni chains is 3.27 A. The scandium 

atoms about the two nickel strings exhibit Sc-Ni distances over 2.62-2.87 A, while Sc-Sc 

distances around the outside of the chain span 3.17 3.48 A. 

Numerous older structures have demonstrated that a preferred environment for the 

late transition metal is in the center of a multicapped trigonal prism of the early transition 

metal."" In the present structure, four such chains of nickel centered within confacial 

scandium trigonal prisms can be viewed as having been condensed together, but the 

relationship is not as clear and direct. One such Sc2-cappcd member in the upper right of 

Figure 2 consists of Scl(*2) and Sc4(^2) as two of the side edges, with the third edge 

Ni2 Nil pair which also centers the next interpenetrating trigonal prism. The 2:5 ratio of 

nickel to scandium, relative to that in SCbNiTei,*'* predicates such condensation. Another 

description of this one-dimensional array is in terms of zigzag chains. If the Sc-Ni 

connectivity of the structure is neglected for the moment, it can be seen in Figure 2 that the 

outside shell of the chain is composed entirely of zigzag Sc-Sc chains along 5"that share 

vertices, the comparable Ni-Ni chains being added internally. While the later interpretation 

is not the most useful in terms of understanding the local bonding, it is visually helpful. 

The description of all of the pairwise atom-atom distances within the Sc;Ni2 chain is 

fairly involved. Some of these are marked in Figure 2, and they are also listed in order of 

decreasing pairwise overlap populations in Table 3. (The complete distance listing is given 

in the Supporting Information.) It should be noted that the chain is centrosymmetric and only 
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one-half of the interactions need to be considered. While Scl is bonded twice to Nil (2.62 

A) and once to Ni2 (2.87 A, across the double Ni chain), Sc5 is connected in parallel but 

more tightly, twice to Ni2 (2.61 A) and once to Nil (2.65 A). Scl and Sc5 also form a zig­

zag pattern atop the double nickel chains with Scl-Sc5 = 3.32 A (*2). Internally, Sc4 

occupies a special position more inside of the chain, and the farthest from any tellurium 

atom. The Sc4 has two short contacts to each of Nil and Ni2, 2.64 and 2.62 A, respectively, 

and long diagonals across the chain center to both Ni (2.86 A). Interestingly, there are also 

short distances between Sc4 and both Scl and Sc5, edges in the square pyramids (3.27 and 

3.31 A), perhaps because of their common nickel neighbors. Finally, the comparable Sc2 and 

Sc3 atoms, the apices of the rectangular pyramids described earlier, are also bonded to their 

basal Nil (2.70 A) and Ni2 (2.67 A), respectively, and also twice each to Sc4 and Scl or Sc5 

at 3.17 - 3.48 A. The two opposed double chains of rectangular pyramids, Sc2(Sc6,2)Ni3, left 

and right in Figure 2, are then interconnected through Scl-Sc5, Sc4-Sc4, and Nil-Ni2 

bonding. (This description is helpful later in understanding the overlap populations.) The 

noncquivalent nickel atoms are reflected in the unequal but generally similar distances about 

them, the most disparate of which being Nil-Sc5, 2.65 A and Ni2-Scl, 2.87 A (not drawn) 

which reflect the skewness of the centrosymmetric chain. Fourier difierence maps do not 

show any extra electron density in the central channel of the chain. The chains are not 

significantly interbonded, as will be shown for the shortest separation of this kind marked in 

Figure I, 3.68 A for Sc2«"Sc3. The Te-Te distances are all ^3.95 A. These structural motifs 

and atomic distances support the ID chain assignment to ScsNijTej. 
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Remarkably similar structural characteristics are found in the chains in Gd3Mnl3," the 

(GdjMn); portion of which is shown along the short 4.13 A axis in Figure 4.-' This is very 

similar to the upper or lower half of the ScjNiiTe chain (Figures 2,3). The iodide was 

likewise described as the base-to-base assembly of two chains of trans-edge-sharing 

rectangular pyramids, which is a ver>' atypical halide structure. This has been classified as a 

distortion e.xtreme of a family of compounds originating with Pr3(Ru)lj, viz., double chains 

of Z-centered R,, octahedra that share trans edges and are further condensed side-by-side. 

Their progressive distortions in other e.\amples can be described as the partial fusion of the 

recognizable twin octahedral chains in Pr,l,Ru etc. as two adjoining octahedra begin to merge 

and the Z elements approach one another.'^ Although the Sc<;Ni;Te, and GdjMnlj 

compositions and geometries may be readily interrelated, the clectron-poorcr interstitial Mn 

also exhibits significant Mn-Mn bonding . 

Theoretical Calculations. Intuitively, the character of the bonding in ScjNiiTe^ 

must be highly delocalized, the bonded metal neighbors ranging from five about Sc2 and Sc3 

through eight for Scl and ScS, 10 for each Ni and 14 for Sc4. Band calculations seemed 

necessary to clarify the situation. Figure 5 shows the total DOS for ScjNiiTe,. Typical for 

these relatively electron-poor compounds, the Fermi level resides on the low energy side of a 

prominent conduction band composed of about 90% scandium d and s orbitals and 10% 

nickel contributions. The nickel d (and Sc d) states comprise all of the lower valence bands 

between —8.5 and -7.0 eV. with tellurium states being the majority at still lower energies 

(ofT scale). A near gap at —6.9 eV occurs with 36 of the 47 total electrons per fonnula unit. 
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The band below there can be described simply, but not rigorously, as 2 Ni (d'") and 2 Te 

(s-p^), with the 11 electrons left over in the conduction band. 

Figure 6 shows the COOP curves for total Ni-Ni, Sc-Sc and Sc-Ni bonding. E^ falls 

largely within bonding regions for both Sc-Sc and Sc-Ni and 0.4 eV below the onset of 

Sc Sc antibonding states. On the other hand, the Fermi level falls in a nonbonding region for 

Ni-Ni interactions, these being virtually closed shell above --7.0 eV. This is a common 

behavior for M-M bonding of late transition metals as they achieve a closed shell d'" 

configuration, as noted in La^Nijl.-' Other cases of early-late transition metal chalcogenide 

structures have been observed to optimize the M-Ni bonding as revealed by COOP curves. 

It is interesting that this is not the situation here, albeit in a structure that does not involve the 

trigonal prisms in a linear face-sharing motif as before. 

A complex structure such as this presents an ample variety of distances and bond 

strengths. Comparisons of bond distances with overlap populations allow one to ascertain 

where matrix efTects, separations fixed more by geometric relationships, may be more 

important than bonding in near-neighbor contacts. For this purpose, pairwise overlap 

populations for Sc-Sc, Sc-Ni, and Ni-Ni are listed in Table 4 in decreasing magnitude along 

with the corresponding distances. These change in parallel fairly well, but there arc some 

significant deviations that assist in highlighting important bonding details. For one, the 

Scl-Sc5 bridging interactions at 3.32 A lie fairly low in the list (0.093). The natural 

assumption is that this distance is moderately to heavily influenced by matrix effects, in 

concert with the suggestion made earlier that the structure could be described as two edge-

sharing sheets built from square p>Tamids and "glued" together by Ni-Sc (and Ni-Ni) 
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bonding. Figure 2. The other cross-distance, Sc4-Sc4, is longer but more central and it has 

only a slightly lower population, 0.082 at 3.53 A. The Sc and Ni orbital energies are close 

enough that they do mix well and give substantial overlap populations, while this is not true 

for the Ni-Ni bonding when the atoms are this well reduced and have virtually closed shells. 

In this ease, the observed distance in the zig-zag chain is quite misleading regarding the 

actual bonding effects. 

Other noteworthy differences are the relatively large overlaps for Sc2-Sc2 (0.045) 

and Sc4-Sc4 (0.037) (but not for Scl-Scl, Sc3-Sc3, and Sc5-Sc5) along the 3.95 A chain 

repeat. This result is not surprising for Sc4, which resides centrally within the chain and 

shows effects that parallel those noted for Sc,Te and ScnTe, where electrons appear to be 

concentrated within metal-rich cluster chains that are isolated by nonmetals neighbors.'"" 

But strong bonding along the chain for Sc2 as well seems unusual as these atoms reside more 

on the periphery of the chains, with three tellurium near neighbors. The larger population 

here may mean additional bonding takes place for scandium that otherwise has fewer (five) 

near metal neighbors. Scandium 3 has the largest number of close Te neighbors (4) and 

thence little Sc3-Sc3 bonding. 

The interchain Sc-Sc distances lie near the bottom of the overlap population list. The 

shortest distance between the chains (Sc2-Sc3, 3.68 A) has an overlap population of 0.036, 

followed by smaller values for analogous but longer distances (Sc I -Sc3, 0.028; Sc 1 -Sc2, 

0.018). There are evidently only meager amounts of electron density between the chains 

(<-15% of the larger internal populations), but whether these are remarkable or substantial is 

doubtful. 
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The notion was posited before that Sc-Ni bonding holds the chain together, an idea 

that goes back to the original studies of early-latc transition metal bonding by Brewer and 

Wengert." These overlaps are given at the bottom of Table 3. The seven shorter types of 

Sc-Ni contacts around 2.61-2.70 A have overlap populations of about 0.17 to 0.21, while the 

three longer contacts of 2.86 A involving Sc4 era long diagonal to Scl have lower values, 

-0.10. One important detail is that the Ni2-Sc3 distance to the apex of one rectangular 

pyramid has a somewhat larger overlap population fhan for the analogous Nil-Sc2 (0.209 vs 

0.174), in parallel with the generally different distances about these two-pseudo-equivalent 

atoms (i.e., Sc2-Scl vs Sc3-Sc5). Similarly the "equivalent" Scl -Ni2 and Sc5-Nil 

diagonals difTer by 0.22 A and in parallel, so do the overlap populations. The causes of these 

distortions are complex and perhaps tied up with the factors behind optimization of overall 

bonding. 

Structural Comparisons. Sc5Ni2Te: is nominally isotypic with HnCo,.,?].,, but 

there are in detail many difTerences in the bonding. These involve the ordering pattern, the 

sizes of the nonmetals and the transition metals, and, presumably, the electron counts. Figure 

7 shows the HfjCoi.^Pj, structure" nearly along [010], with the bonds in the double zigzag 

chain unit that are comparable to those in Figure 1 outlined in black, and the additional 

metal-metal interactions about it, as open bonds. The Hf-Hf and Hf-Co bonding in this 

occurs in essentially a 3D arrangement, as judged by distances and, especially, overlap 

populations.' The few Hf-Hf distances displayed on the structure show that the equivalent 

"interchain" distances are approximately equal to or less than those within. This 

condensation of the building units expresses the greater number of metal-based electrons for 



www.manaraa.com

109 

hafnium compared with scandium and, most certainly, the smaller size of phosphorus 

compared with tellurium. Once again, as was the case for the MgChj phases (M = Sc, Y; Ch 

= Se, Te vs TCnChj, Ch = S, Se),** there is a cooperative effect of increased anion size and 

decreased valence electron concentration that acts to reduce the dimensionality of the 

scandium interactions. 

In addition to the reduction in dimensionality in Sc5Ni2Te;, there is also a substantial 

difference in ordering of the nonmetal and transition metal atoms. In HfuCoi.,?}a phase 

width (0 x cO.5) arises from the varying occupancy of one intrachain position by cobalt 

(gray) and phosphorus (black). The authors attributed this in part to the similar atomic sizes 

and their distances lo hafnium. For Sc^NiiTc:, the intrachain zigzag chains are composed 

solely of nickcl atoms, and the interchain cavities arc filled only by tellurium, which 

emphasize the lowered dimensionality. This new ordering rests with the fact that tellurium 

and nickel have disparate atomic sizes and very different bonding characteristics to scandium. 

Furthermore, a large phase width is no longer a structural feature. The resultant ordering 

generates only fairly weak Ni-Ni bonding. The variability among these structures is 

remarkable. 

There arc interesting parallels and contrasts between the metal-rich chalcogenide 

compounds of the rare-earth elements and the longer known halides. Twice as many halide 

as chalcogen atoms would be needed to achieve the same electron count per metal, and this 

anion preponderance alone would produce better separation of the metal-bonded units and 

reduction of the dimensionality of the halides, as obser\'ed. Isolated halide clusters are thus 

much more common, and chains of edge-sharing metal octahedra are relatively fewer (YjClj, 
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ScsClsC, Y4I5C, etc.). The halides are in fact generally so electron-poor that interstitial 

heteroatoms are nearly always required for stability. Including the electron count of the 

interstitial gives 2.3 - 2.8 electrons per cluster metal, 2.8-3.2 e in chains, and X/R values of 

roughly 1.0 (condensed clusters) to 2.0 (isolated).(The odd binary YiClj and SciClm 

remain cxccptions at 1.8 c /R.) The binary chalcogcnidcs Sc,Tc and SchTc, achicvc only 

slightly lower electron counts than cluster halides, 2.0-2.25 per metal, but with 

disproportionately lower Ch/R values, 0.5 - 0.38. In other words, the grossest analysis 

suggests that both classes of the metal-richest group 3 compounds achieve similar electron 

counts per metal, ca. 2.0-2.5, but at greatly different stoichiometrics: 1.3-1.7 X/R vs ^0.5 

Ch/R.-" The latter nicely correlates with the notably greater aggregation found in the metal-

richest chalcogenides. As with later transition-metal chalcogenides, these too would appear 

to be driven by M-M bonding when the anion number is insufficient to give good sheathing 

of the metal aggregate. It's harder to compare these two families of compounds electronically 

when they contain late transition metal components (GdjMnl, vs. ScjNi^Te,), but if we ignore 

the contributions of the latter the difference in VEC is similarly low (2.0 vs. 2.2). 

Finally, the roles of the anions are rather different, evidently because of differences in 

their quantity. Halides (CI, Br, 1) generally exhibit several very discrete functions on these 

clusters or chains, being two to four coordinate as they bridge all exposed edges and bond 

exo at all vertices of the cluster units. Exceptions are rare.'"* The greatly reduced telluride 

numbers lead to much higher coordination numbers and less regular geometries, usually 

some form of an augmented trigonal prism. In the present compound, two different tellurides 

have each 6-7 neighbors at 2.91-3.06 A, plus two more contacts at 3.16 A. These marked 
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differences have generally led us to include the halides in illustrations, but to omit the less 

specific chalcogenide environments. One would in fact expect the chalcogenide-metal 

interactions to be somewhat more covalent. 

Conclusions. Sc5Ni2Tei is significant because it represents the first extension of 

early late transition metal bonding in chalcogcnidcs to the earliest, and most electron-

impoverished transition metals. The structure is built up from double nickel zigzag chains 

sheathed by scandium atoms and separated from other ScsNii chains by tellurium atoms. The 

metal substructure can be envisaged as trans-edge-shared double square pyramid chains 

"glued" together at their bases mainly by Sc-Ni bonding. Reduction in dimensionality 

compared with HfjCo,.,?, ^ results from a new ordering of the nonmetal and late transition 

metal and the different anionic nature of tellurium. A decreased number of metal-based 

electrons is in concert with the absence of interchain bonds via tellurium in this new phase. 

These structural interrelationships aid in the understanding of this new ternary phase. 
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Supporting Information Available 

Tables of additional crystallographic and refinement parameters, anisotropic thermal 

parameters, and a complete listing of nearest-neighbor distances (4 pages). Ordering 

instructions are given on any current masthead page. 
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Table I. Some Data Collection and Refinement Parameters for ScjNiiTe;. 

Formula weight 

Space group, Z 

Lattice parameters," (A, A^) 

a 

h 

c 

V 

(/„!,, g/cm' 

cm ' (Mo Ka) 

R; RJ % 

597.42 

Pnma (No. 62), 4 

17.862(1) 

3.9533(3) 

10.6398(6) 

751.3(1) 

5.281 

167.35 

3.2, 3.2 

Guinier data, Cu Ka, 23 °C. 58 lines. 
R - SIIFJ - |F,||/2|rj; R^ = [SH'(|F.,| - |FJ)-/SU'(FJ-]' ^ vf = o,. v 
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Table 2. Positional and Isotropic-Equivalent Thermal Parameters for Sc^NijTc;." 

Atom .V z Bc(A-)'' 

Tel 0.10736(6) 0.5103(1) 0.71(4) 

Te2 0.73263(6) 0.3098(1) 0.71(4) 

Nil 0.9159(1) 0.1038(2) 0.83(7) 

Ni2 0.993y( 1) 0.8261(2) 0.84(8) 

Scl 0.1526(2) 0.7819(3) 0.7(1) 

Sc2 0.2730(2) 0.4786(3) 0.8(1) 

Sc3 0.8663(2) 0.6963(3) 0.8(1) 

Sc4 0.5740(2) 0.4410(3) 0.8(1) 

Sc5 0.9808(2) 0.3281(3) 0.8(1) 

" All atoms on /«. y = 



www.manaraa.com

116 

Table 3. Selected Metal-Metal Distances (A) and Overlap Populations in ScjNiiTcj. 

Atom 1 Atom 2 Distance Overlap pop. per pair 

Scl Sc2 3.17 x2 0.199 

Scl Sc4 3.27 0.194 

Sc4 Sc5 3.31 x2 0.172 

Sc2 Sc4 3.48 x2 0.10? 

Sc3 Sc4 3.44 x2 0.108 

Sc3 Sc5 3.38 x2 0.099 

Scl Sc5 3.32 x2 0.093 

Sc4 Sc4 3.53 x2 0.082 

Sc2 Sc2 3.95" x2 0.045 

Sc4 Sc4 3.95" x2 0.037 

Sc2 Sc3 3.68" 0.036 

Scl Sc3 3.83" x2 0.028 

Scl Sc2 3.88" x2 0.018 

Scl Scl 3.95" x2 0.015 

Sc5 Sc5 3.95" x2 0.009 

Nil Ni2 2.66 <2 0.020 

Nil Ni2 3.27' -0.007 

Ni2 Sc3 2.67 0.209 

Ni2 Sc4 2.62 x2 0.191 

Ni2 Sc5 2.61 x2 0.192 

Nil Scl 2.62 x2 0.184 

Nil Sc4 2.64 x2 0.178 

Nil Sc2 2.70 0.174 

Nil Sc5 2.65 0.174 

Ni2 Sc4 2.86 0.107 

Nil Sc4 2.86 0.104 

Ni2 Scl 2.87 0.098 

" Unit cell repeat in the chain. 
'' Interchain distance. 

Shortest distance between two nickel chains. 
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Supporting Information 
ScsNiiTci: Synthesis, Structure, and Bonding of a Metai-Metal-Bonded 

Chain Phase, A Relative of GdjMnl, 

Paul A. Maggard and John D. Corbett 

Table SI. Single Crystal X-ray Data Collection and Refinement Parameters for SCiNiiTe,. 

Formula weight 597.42 

Space group, Z Pnma (No. 62), 4 

Crystal Dimensions, mm 0.1x0.1x0.4 

Lattice parameters," (A, A^) 

a 17.862(1) 

b 3.9533(3) 

c 10.6398(6) 

V 751.3(1) 

g'cm' 5.281 

Radiation; 20m„ Mo K„; 60" 

Octants measured h. ±k, ±/ 

Scan method 

C
D

 

i 
3

 

Temperature, "C 23 

Number of reflections: 

measured 4627 

observed (1 ^ 3o(I)) 1938 

unique 653 

/i, cm ' (Mo Ka) 167.35 

Absorption corr. method 2 ({(-scans 

Relative transmission range 0.806-1.000 

/?„,(! ^ 3o(I)),% 9.2 

Number of variables 56 

Residuals R; R^,'' % 3.2,3.2 

Goodness of fit 1.20 

Sec. extinct, coeff. 9.9(4) X 10^ 

Guinier data, Cu Ka, 23"C, 58 lines. 
R = 2|if J - |F,||/L|FJ; ^ 
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Table S2. U,, (A*) values for Sc^NijTej. 

Atom U:: Uj, U,, 

Tel 0.0110(5) 0.0097(4) 0.0070(5) -0.0006(4) 

Te2 0.0091(5) 0.077(5) 0.010(2) -0.001(4) 

Nil 0.011(1) 0.0092(8) 0.011(1) -0.002(8) 

Ni2 0.013(1) 0.0091(9) 0.010(1) -0.004(9) 

Scl 0.010(1) 0.008( 1) 0.007( 1) -0.001(1) 

Sc2 0.011(2) 0.010(1) 0.011(1) 0.001(1) 

Sc3 0.012(1) 0.009( 1) 0.011(1) 0.001(1) 

Sc4 0.014(1) 0.007(1) 0.008(1) -0.001(1) 

Sc5 0.011(1) 0.009(1) 0.011(1) 0.001(1) 

" U,: = U,, = 0. 
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Table S3. Selected Distances (A) in ScsNiiTci. 

Tel 2.\ 3.9533(3) Ni2 Nil 2x 2.657(2) Sc3 Tel 2x 2.994(2) 

Te2 2.x 3.967(1) Nil 3.267(3) Tc2 2x 2.914(2) 

Te2 4.075(2) Scl 2.874(4) Ni2 2.665(4) 

Scl 3.000(3) Sc3 2.665(4) Sc4 2x 3.438(4) 

Sc2 2.978(3) Sc4 2x 2.622(3) Sc5 2.x 3.381(4) 

Sc3 2.x 2.994(2) Sc4 2.862(4) 

Sc5 2.978(3) Sc5 2x 2.608(2) Sc4 Te2 3.158(3) 

Sc5 2x 3.056(3) 

Scl Tel 3.000(3) 

Nil 

Nil 

2x 2.635(3) 

2.864(4) 

Tel 2x 3.967(1) Tc2 2x 3.010(3) Ni2 2x 2.622(3) 

Tel 4.075(2) Nil 2x 2.624(2) Ni2 2.862(4) 

Te2 2x 3.9533(3) Ni2 2.874(4) Scl 3.266(4) 

Scl 2x 3.010(3) Sc2 2x 3.171(3) Sc2 2x 3.480(4) 

Sc2 3.152(3) Sc3 3.825(4) Sc3 2x 3.438(4) 

Sc2 2x 2.998(2) Sc4 3.266(4) Sc4 2x 3.533(5) 

Sc3 2x 2.914(2) Sc5 2x 3.310(3) Sc5 3.312(4) 

Sc4 3.158(3) 

Sc2 Tel 2.978(3) Sc5 Tel 2x 3.056(3) 

Ni2 3.267(3) Te2 2x 2.998(2) Tel 2.978(3) 

Ni2 2x 2.657(2) Te2 3.153(3) Nil 2.653(4) 

Scl 2x 2.624(2) Nil 2.699(4) Ni2 2x 2.608(2) 

Sc2 2.699(4) Scl 2x 3.171(3) Scl 2x 3.310(3) 

Sc4 2x 2.635(3) Sc3 3.683(4) Sc3 2x 3.381(4) 

Sc4 2.864(4) Sc4 2x 3.480(4) Sc4 3.312(4) 

Sc5 2.653(4) 
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Figyre 1. Near-[010] section of the chain structure of Sc^NijTej (99.9% probabihty ellipsoids). The 
Ni atoms are black, Sc, white, and Te, gray ellipsoids. The shortest interchain distance is 
marked. The a axis is horizontal. 
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Figure 2. The centrosymmetric repeat unit in the Sc5Ni2 chain, with the numbering 
scheme and independent distances marked. Nickel atoms and Ni-Ni bonds 
are darker. 
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Figure 3. Side view of the Sc5Ni2 metal chain (Figure 2), with the short h - 3.95 A repeat horizontal. The Ni 
atoms are darkened with the gray one further away. Note the construction of Ni-based rectangular 
pyramids of Sc; one is marked by a heavier outline. 
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Figure 4. A[OIO] view of the metal chain in GdjMnlj" along the short repeat. 
Compare with the top or bottom half of the ScjNij chain in Figure 3. 
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(u -6.0 

ijj -7.0 

DOS 

Figure 5. The densities-of-states from EHTB band calculations for ScjNi^Te;. The separate 
Sc and Ni contributions are projected out. 
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Sc-Sc 

Figure 6. Total COOP (overlap-weighted orbital populations) curves for pairwise interactions in ScjNijTe,. 
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FigHrc 7. Near-[010] projection of the structure of HfjCo,.,?,., (0 < x < 0.5) with Co gray, P black/ 
The chain unit evident in Sc5Ni2Te2 (Figure I) is outlined. 
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CHAPTER 6. TWO-DIMENSIONAL METALLIC COMPOUNDS 
YjM Je. (M = Fe, Co, Ni) THAT ARE RELATED TO Gd.Mnlj. 
HYDROGEN ABSORPTION IN THE YjNi Je.H, DERIVATIVE 

A paper prepared for submission to the Journal of the American Chemical Society 

Paul A. Maggard, Robert W, Henning and John D. Corbett 

Iowa State University, Ames, lA 50011 
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439 

Abstract 

Y^MiTci (M = Fe, Co. Ni) have been prepared by high-temperature solid-state 

techniques, and shown to be isostructural and orthorhombic Cmcm (No. 63) with Z = 4. The 

structure was established by X-ray single crystal methods at 23 "C for M = Fe, with a = 

3.9594(3)A,/) = 15.057(1 )A, and c = 15.216(1 )A. The new structure contains zigzag chains 

of late-transition metals sheathed by yttrium atoms that are condensed through trans vertices 

to yield 2D bimetallic layers separated by single layers of tellurium atoms. Reaction of 

hydrogen with Y^NiiTe, causes a rumpling of the Y-Ni layers as determined from combined 

X-ray single crystal and neutron powder diffraction for YjNijTeiDo^id,: Pnma (No. 62) with 

Z = 4. Lattice constants from Guinier powder dilTraction at 23 "C and neutron techniques at 

-259 "C, respectively are: a = 14.3678(7), 14.3282(2)A, h = 4.0173(2), 4.01167(5)A, and c = 

15.8787(7), 15.8359(2)A. The hydrogen is accommodated in a tetrahedral yttrium 

environment within the 2D bimetallic layers. Lattice constant trends indicate that a more 

fully hydrided version exists. Band structure calculations confirm the 2D metal-bonded 
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character of the compounds, and also help illustrate the bonding/matrix changes with the 

absorption of hydrogen. The ternary structures for both YjMiTci and Sc^NiiTcj derive from 

that of GdjMnlj, and illustrate three different kinds of metal chain condensation. 

Introduction 

The understanding of metal-metal bonding and its consequences has experienced 

much growth since the early empirical studies on metals by Pauling.' Our research group has 

focused considerable attention on the early transition-metal-rich chemistry of the halides and 

chalcogenides to uncover the many different expressions of metal-metal bonding and their 

import. Examples of group III chalcogenides include ScTe,' (Sc,Y)j,Te,,' and Sc^Te,,"' while 

representatives from the complementary binary halides include SC7CI10,' Y^Cl,," and Lai.' 

The chalcogenide and halide compounds share one similar feature, that each contains trans-

edge-shared metal octahedral chains linked via vertices or edges to form diverse 1D and 2D 

metal-bonded structures. The halide metal structures have relatively more anions and 

naturally tend to be less condensed. Close structural relationships have been found with 

compounds in electron- richer binary systems, such as between ScsTe, and TiKCh,* '' (Ch = S. 

Se), or Sc;Te and Zr,Te.'" Later transition metals have long been known to stabilize early 

transition metal clusters in the halides," and research in ternary chalcogenide chemistry has 

uncovered more structural interrelationships between ScsNiiTe,,'- GdjMnls,'^ and HfjCo,.,?,. 

„ (0 < .V < O.S).'"* These relationships have helped us to assess how anion sizes, metal-

electron concentrations and metal-to-nonmetal proportions influence structural features. A 

new linkage in cluster condensation among the bimetallic layered compounds is reported here 
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for YjMiTe. (M = Fe, Co, Ni), with its close electronic and structural interrelationships to 

GdsMnlj and ScjNiiTci giving further clues as to factors that contribute to the dimensionality 

and persistent features of metal-metal bonding. 

From another perspective, combinations of early with late transition metals in binary 

systems has been descried as important as hydrogen storage materials, as in LaNi,." The Y-

M (M = Fe, Co, Ni) systems have also been considered to be very promising for hydrogen 

storage"* because yttrium's lower atomic mass compared with those of the heavier 

lanthanides increases the amount of hydrogen absorbed per unit weight,'" and YNi, does in 

fact absorb more hydrogen (by weight) than LaNi,."* The phases YNi,, YjNii and YNij have 

been studied earlier as hydrogen storage materials, and all are reported to keep their 

respective structure type, even with up to four bound hydrogen atoms per formula unit."' We 

report here the hydrogen absorption within the 2D Y-Ni layers of YjNiTe, and the resulting 

structural and bonding transformations. 

Experimental Section 

Syntheses. All materials were handled in a He-filled glovebox. The sources (yttrium 

sheets, iron chunks, cobalt, nickel and tellurium powder, all with reported purities of > 

99.9%), and the preparation of Y,Te3, were described before.'- '* 

YjMjTe: (M = Fe, Co, NI). Appropriate amounts of the elements and YjTcj to give 

the YsM^Tcn (M = Fe, Co, Ni) stoichiometry (-300 mg total) were pelletized with the aid of a 

hydraulic press and sealed inside tantalum tubing. These were heated to lOSO °C for 84 h 

inside fused-silica containers and then allowed to radiatively cool inside the furnace. Guinier 
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powder patterns at this point revealed yields from 75 to 95% YjMiTc,, with small amounts of 

yttrium metal (visual), YTe, and the appropriate late-transition metal as impurities. 

YsMiTejH,. This compound was initially synthesized via an adventitious hydrogen 

contamination of newly prepared yttrium powder. A yttrium rod (Ames Laboratory > 99.9% 

purity) had been hydridcd by slow heating (-10 "Chr) to 700 "C in a fuscd-silica apparatus 

under a hydrogen pressure of 0.8 atm, kept there for 5 hours, and allowed to cool radiatively 

in the fumacc. The sample was powderized in an alumina mortar, and Guinicr patterns taken 

at this point revealed a mixture of YHi and YH,. A pure sample of YH, was later prepared 

according to the known P-T-c diagram'" by reacting a similar mixture at 200 "C for 36 h 

under 1 atm of H^. To prepare granular yttrium metal, the powdered hydride sample was 

placed inside a high-temperature vacuum furnace and dehydrided by heating to 750 "C for 48 

hours until the vacuum pressure decreased to 3 10" atm. Apparently, the yttrium was not 

sufficiently dehydrided (below) under these conditions, although it had started to sinter. 

Use of this yttrium powder to prepare the YjMiTe; phases according to the procedure 

above resulted in an unidentified product for M - Ni. To confinn suspicions about hydride, 

this phase was converted to the known YjNijTe; compound (above) and back to the unknown 

by first heating it to 950 "C for 24 hours in the high-temperature fumace under dynamic 

vacuum and then by reaction with small amounts of YH, (in fused silica) in a tube fumace. 

The supposed Y,Ni2Te2H, phase was then prepared from YiTe,, Ni, YH3 and non-hydrided 

yttrium sheet as before for the loaded compositions x = 0.4,0.6,0.8, 1.0, 2.0, 3.0, and 4.0 

under the reaction conditions described before for the temaries. A reaction, on a 5 gram 

scale, was also performed with YD3 at the loaded composition Y,Ni2Te2D|; for the neutron 
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data collection. Similar reactions with iron and cobalt in place of nickel and loaded as 

Y^MiTe.HT gave no evidence of a hydride. All of the lattice constant results are listed in 

Table 1. 

Powder X-ray DifTraction. The powder diffraction patterns of all phases were 

obtained with the aid of an Enraf-N'onius Guinicr powder camera and monochromatic Cu Ka, 

radiation. The samples were crushed into powder form, mi.xed with standard silicon (NIST), 

and placed between two strips of Scotch-brand tape on a frame for mounting on the camera 

rotation motor. Lattice parameters were obtained by least squares of the measured and 

indexed lines in each sample referenced to silicon. Lattice parameters for the Y^MjTei (M = 

Fe, Co, Ni) phases and the YjNiiTciH, series of hydrides are given in Table 1. 

Single-Crystal DifTraction. YsFejTcj. Several black, irregularly shaped crystals 

were obtained from reactions loaded Y^Fe^Tej and mounted inside 0.3 mm i.d. glass 

capillaries that were scaled off and affixed to metal pins. Their crystal quality was checked 

by means of Laue photographs, and the best crystal was selected for data collection on a 

Rigaku AFC6R rotating-anode diffractometer (Mo Ka radiation, graphite monochromator) at 

23''C. Twenty-five reflections were located from a random search, centered, and used to 

determine provisional lattice constants and crystal system. Four octants of data were 

collected (/j, ±k, ±1) to 20„^ = 56° and corrected for Lorentz and polarization effects. The 

data were further corrected for absorption with the aid of three (|r-scans. Of 3106 measured 

reflections, 305 were unique and observed (/ > 3a,). Extinction conditions and statistical 

evidence for centricity indicated one possible space group, Cmcm. The structure was solved 

by direct methods (SHELXS") and refined with the package TEXSAN'" in this space group. 
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The final anisotropic refinement converged at R{F)/R^ = 4.6/4.2% for the composition 

YjFeiTei. Some data for these processes are given in Table 2, and the atomic positions and 

isotropic-equivalent thermal parameters are given in Table 3. Additional data collection and 

refinement parameters, the anisotropic displacement parameters, and a complete distance list 

arc in the Supporting Information. These as well as the listing arc available from 

J.D.C. 

YjNijTcjH,. Crystals from the reaction loaded YjNiiTe^H were mounted and 

checked, and the best was taken for a data set collection on a Bruker CCD diffractometer 

operating at room temperature with Mo Ka radiation. Ninety reflection frames collected 

with 30-s e.xposures were analyzed and yielded an orthorhombic unit cell and provisional 

lattice parameters. One sphere of reflections was collected (±h, ±k, ±1) to 20n,„ = 56" and, 

when integrated and filtered with SAINTPLUS*' gave 7740 reflections, of which 784 were 

unique and obser\'ed (/ > 3a,). An absorption correction was applied with the program 

package SADABS." E.xtinction conditions and statistical evidence for centricity indicated 

one possible space group. Puma, and the structural model was obtained and successfully 

refined with the SHELXTL" program. Some data collection and refinement parameters are 

given in Table 2. The refinement converged at R\/wR2 = 3.4/7.8% for the composition 

YjNiiTei. The hydrogen positions could not be detected or refined in the structure. The 

positional and isotropic-equivalent temperature parameters for the heavy atoms are given in 

Table 4. Additional data are available as described earlier. 

Neutron Powder DifTraction. Atomic positions and isotropic displacement 

parameters for the deuteride Y5Ni2Te2Do 4i,i) were established with the aid of neutron powder 



www.manaraa.com

133 

diffraction data collected at - 259 "C on the General Purpose Powder DifTractometer (GPPD) 

at the Intense Pulsed Neutron Source (IPNS) facility at Argonne National Laboratory.-^ The 

GPPD is a time-of-night diffractometer with multidetector arrays at fixed scattering angles, 

and the high-resolution data from the 20 = 90.0 and 145.9" backscattering detector banks 

were used for refinement. The powder data were refined using the Rictvcld method''' with 

the PC version of the General Structure Analysis System (GSAS),*' starting with the 

positional data taken from the single crystal X-ray study. The final refinement included data 

in the range 0.6 <d< 3.0 A. 

The heavy-atom structure, determined from X-ray diffraction, readily refined and 

revealed a single deuterium position in a yttrium tetrahedral interstice. Fractional 

refinements of this position gave a D occupancy of 41.1(1)%. Three impurity phases, YTe, 

YNi, and YD, were also observed and refined to the relative amounts of 13.0( 1), 7.8( 1), and 

1.28(9)% (by weight), respectively. The background function was a cosine Fourier series 

with 6 coefficients, and the final conventional agreement indices were = 3.2/4.6% with 

a reduced x* of 3.509. Some neutron data collection and refinement parameters arc listed in 

Table 5. The neutron diffraction patterns in Figure I show the raw intensity data and, from 

top to bottom in each range, the background, and the individual contributions from the main 

Y5Ni2Te2Do4i,i) and impurity phases, and the difference between the calculated and observed 

intensity profiles. Each profile includes tick marks to show the locations of the calculated 

reflections. A full distance list is available in the Supporting Information. 

Band Calculations. Extended HUckel band calculations were carried out within the 

tight-binding approximation*" for the full structures of YjFcjTe, and YsNiiTczDo s by removal 
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of two well-separated D per unit cell at 96 k-points spread out over the irreducible wedge. H„ 

parameters employed for Y, Ni, and Fe were iterated to charge consistency for their 

respective structures (eV): Y 5s, -6.61; 5p, -4.18; 4d, -6.27. Fe 4s, -6.20; 4p. -3.00; 3d. 

-7.97. Ni 4s. -6.62; 4p, -3.19; 3d, -9.44. Te 5s, -21.20; 5p - 12.00.- D Is - 13.60. 

Results and Discussion 

Syntheses. Synthesis of the ternary Y^M.Te, (M = Fe, Co. Ni) phases were 

straightforward, and their lattice constants are listed in Table 1. The series of reactions loaded 

Y^NijTciH,. .v = 0.4 - 4.0. were performed to aid in determining the possible range of 

hydrogen absorption into the structure (middle and lower parts of Table I). The series of 

reactions loaded x - 0.4, 0.6. 0.8, 1.0, 2.0. 3.0 and 4.0 had yields of approximately 85% (first 

three). 75%. 60%, 50% and 30% Y^NiiTeiH,, respectively. All products contained Y^Te, and 

YNi impurities, but YH, was only observed as a side product at YsNijTeiH, and beyond. 

Inspection of the lattice dimensions obtained for the x = 0.4 - 2.0 series shows a fairly 

constant volume at -915 A\ while the volume for .v = 3.0 - 4.0 distinctly increases to plateau 

at -924 A'. The high yields for .r = 0.4-1.0 imply a single structure type with no detectable 

trend in lattice constants. The neutron data sample, loaded YjNi^Te^D,had a refmed 

composition of YjNijTejDom,!, and a cell volume consistent with the lower range of.r (Table 

1). This suggests a higher hydrogen occupancy is probable for the reactions with .v = 3.0 -

4.0, and lower % yields. An X-ray single crystal structure determination for x = 4.0 was 

attempted, but only could show a consistent unit cell dimension and crystal system due to the 

poor crystal quality. 
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Similar reactions were loaded with iron and cobalt in place of nickel. The lattice 

constants of reactions loaded Y5Fe2Te2H2 and Y5Co2Te2H2, upper half of Table I, are 

statistically unchanged from those for pure YjFeiTe: and YjCoiTe,, which implies no hydride 

is formed. 

Structural Description. 

YjFciTcj. A near-[IOO] section of the structure viewed along the short 3.95 A a.\is 

is drawn in Figure 2, with 99.9% probability thermal ellipsoids. In this view, any Y-Fe 

bonds have been omitted for clarity, and will be highlighted/discussed later. In general, the 

atom distribution can be viewed as extended zigzag chains of iron (gray) that arc sheathed 

within yttrium (open) columns that are further connected via trans-vertices into 2D metallic 

layers well-separated by a single layer of tellurium atoms (black). The yttrium atoms in the 

apparent six-membcred rings alternate in the projection by all. A side view in Figure 3 

better illuminates this and the connectivity along a. A face-sharing yttrium trigonal-prismatic 

chain surrounds each iron zigzag chain, with each yttrium chain contributing capping atoms 

to the neighboring ones, to form the bimetallic layer. 

Selected metal-metal distances for YjFe^Tej are listed in Table 6 and marked on the 

Figures. The shortest distance between two Y^Fcj sheets, tAYl-Yl) = 3.78 A, is a weak 

interaction (below). The shortest yttrium-yttrium distances in the structure are within the 

bimetallic layer around Y3, Y3-YI and Y3-Y2 at 3.54 and 3.55 A, respectively, which deflne 

elongated body-centered cubes around Y3. These cubes (offset by '/j a) are connected to 

each other at the top and bottom through Y1-Y2 at 3.70A, forming the shell around the iron 

chain. A similar condensation around a late transition-metal chain has been described for 
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ScsNiiTci,'* in which a pair of edge-sharing square-pyramidal chains interconnect to form the 

sheath. In YjFeiTei, the yttrium body-centered cubes may be similarly described as two 

vertex and basal-shared square pyramids. Longer yttrium distances occur on the edges 

(dashed) of the body-centered cubes (through the yttrium shell interior) for Yl-Yl and 

Y2-Y2 at 3.99 and 3.80 A. The body centered cubes form a face-sharing chain down the 

short u axis, for which all atoms repeat at 3.95 A, Figure 3. 

The near-[001] section of the structure in Figure 3 reveals the Y-Fe bonding more 

clearly. Each iron is surrounded by a yttrium trigonal prism at distances of 2.87 - 2.95 A. 

The trigonal prisms around both iron positions arc capped three times, once by Y3 on 

opposite sides at 3.05 A for Fel and 3.32 A for Fe2 respectively, and twice by the opposing 

iron atoms, Fel and Fe2, at 2.30 A. In this arrangement, the capping nickel atoms for one 

trigonal prism are centering atoms for the next on each side, forming interpenetrating trigonal 

prisms, as in Sc^NiiTe^. Surprisingly, this Fc-Fc bond length is shorter than Pauling's single-

bond distance. 2.33 A.' This perhaps originates with matrix effects from the strong Y-Fe 

bonding, as the calculated overlap population per bond is less than expected (below). 

The tellurium atoms sandwiched between the bimetallic layers are bound in bicapped 

trigonal prisms of yttrium, with Y-Te distances of 3.15-3.33 A, a typical environment for 

tellurium in these metal-rich phases.-"* The closest Te-Te distance is 3.71 A (marked), -0.15 

A shorter than that normally seen in metal-rich telluride compounds or van der Waals 

separations. This Te-Te distance is fixed more by matrix effects, as the Y-Te bonds have 

some covalency, and the Te-Te interaction is calculated to be antibonding (below). 
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YjNIjTejDo 4,„). A near-[OlO] section of the structure, analogous to the [100] 

section of YsFciTe,, is shown in Figure 4 with marked atoms and distances, and Figure 5 is 

again the comparable view normal to the sheets. The atom distribution and coding is the 

same as in YjFe.Tei, but that the bimetallic layers are rumpled to accommodate the 

deuterium (hatched). 

Selected metal-metal distances for Y^NiiTeiDuji,,, are reported in Table 7 and marked 

on Figures. The shortest distance between the bimetallic layers, t/(Yl-Y2) = 3.91 A (marked) 

is again a weak interaction (below), while the shorter distances and stronger interactions are 

located within the 2D layer. Compared with Y3 in YjFcjTe, (Figure 2), the equivalent Y4 

centers a more distorted cube, with two similar by short yttrium distances, Y5-Y4 at 3.59A 

and YI-Y4 at 3.55A, around D. and two comparably longer distances, Y2-Y4, 3.77A; 

Y3-Y4, 3.72A. The Y4 centered distorted cube is connected to another through Y1-Y3 at 

3.62A and Y3-Y5, 3.63A, forming the sheath around the nickel zigzag chain. The edges of 

the distorted Y4-centered cubes, YI-Y2 at 3.50A and Y3-Y5 at 3.58A, are -0.4 A shorter 

than in YjFcjTe,. These distance changes likely reflect a reapportioning of the metal-based 

electrons away from the Y4 cube center (Y2-Y4, Y3-Y4) and towards the cube edges 

(Y1-Y2, Y3-Y5) (below). All atoms, including the yttrium body-centered cubes, repeat 

down the short axis at 4.01 A. 

Figure 5 reveals the Y-Ni and Y-D bonding more clearly. Each nickel is again 

surrounded in a distorted yttrium trigonal prism at distances of 2.7 - 2.8 A. However, the 

distance to one Y vertice of the trigonal prism, that is shifted closer to deuterium, is increased 

(not marked), Yl-Ni2 at 3.14 A, and Y5-Nil at 3.18A. Each nickel trigonal prism is capped 



www.manaraa.com

138 

three times, once each by Y4-Nil and Y4-Ni2 at 3.13 and 3.09 A, and twice by opposing 

nickel atoms, Nil-Ni2 at 2.69 A, close to that in ScjNijTei, 2.66 A.'-. Again, Pauling's 

Ni-Ni single-bond distance is much less, 2.30 A,' and so possible matrix effects in the parent 

YjFe.Te, structure type have disappeared with the structural change. The Y-Ni distribution 

is such that the capping nickel atom of one trigonal prism is the centering atom in the next, to 

form the interpenetrating trigonal prisms. The added deuterium atom is bound in a yttrium 

tetrahedron with Y-D distances of 2.26 - 2.32 A, a chain of these tetrahedra sharing vertices 

in an eclipsed conformation down the h axis. This distance compares well with 2.24A for the 

crystal radius for Y'" (VI) and a general value of l.lOA for H . 

Tellurium atoms sandwiched between the bimetallic layers are again bound in a 

bicapped trigonal prism of yttrium, with Y-Te distances of 3.10-3.32 A. The closest Tc-Te 

distance is 4.0lA down the short h axis, -0.3 A longer than before. The shortest Te-Te 

distance in Y,Fe;Te;, marked at 3.71 A in Figure 2, has increased to 4.58 A in Y5Ni;Tc,D„4ijii 

as a result of the structural distortion. As will be noted in the next section on electronic 

calculations and matrix effects, hydrogen absorption apparently relieves the structural 

compression. However, it is not yet not possible to fully quantify these matrix/bonding 

effects. 

Theoretical Calculations. Band calculations seemed necessary to understand better 

the metal-metal bonding in Y^Fe^Te^ and Y,Ni2Te2Do4„,,, as conclusions based on atomic 

distances alone can be misleading.-"* Figures 6 and 7 show the total densities of states (DOS) 

and selected crystal orbital overlap population (COOP) curves for YjFe^Tej and 
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YjNiiTeiDo ,, respectively. Transition metal contributions have each been projected out in 

the respective DOS. 

The Fermi level in the iron compound resides in a broad conduction band composed 

of -65% yttrium and -35% iron d-character, hence the solid is e.xpected to be metallic. Iron 

is the major contributor to the bands between -8.0 and -Q.O cV, while yttrium is at higher 

energies. The COOP curves at the Fermi level reveal Y-Y bonding and Fe-Fe antibonding 

character up to -5.SeV, to reveal the electron poor character of this compound, and with 

Y-Fe bonding being within 0.5 eV of optimization. 

For Y5NiiTeiDu5, the Fermi level resides in a conduction band composed of -85% 

yttrium and -15% nickel d-character, and again the solid is metallic. As expected intuitively 

from the composition, to vary the hydrogen site occupancy from one to zero results in an 

insignificant change, ±0.03eV, in the Fermi level. Nickel is the major contributor to the 

conduction band below -8.6eV, while at higher energies yttrium is. The nickel d-states fall 

lower and are much narrower in energy (-1 .OeV) and more core-like than were the iron 

states. This is a common observation and arises in part from the fact that the yttrium d and s 

atomic orbitals are 1.5eV closer to the iron d orbitals than to the nickel states. The COOP 

curves reveal Y-Y and Y-Ni bonding character remain well above E„ but mostly nonbonding 

Ni-Ni interactions once the d core bccomes filled about 1 eV below there. The Y-Ni 

interactions are farther from optimization than Y-Fe in Y^Fe^Te,, by -1.5eV. 

Comparison of bond distances with pairwise overlap populations allows one to 

ascertain where matrix effects, separations that are fixed more by geometric relationships, 

appear to be more important than bonding via near-neighbor contacts. For this purpose. 



www.manaraa.com

140 

pairwise overlap populations for Y-Y, Y-M, and M-M for YjFeiTe: JUid Y5Ni2Te2Do5 are 

listed in decreasing magnitude with the distances in Tables 6 and 7. 

In Y^FciTei, the highest Y-Y overlap populations (OP) occur within the Y3 centered 

cube, Y3-Y1 and Y3-Y2 at -0.23 for both, and also along the notably longer repeat distance 

0.16, for only Y3-Y3, around which Y-Y bonding dominates. The next highest Y-Y 

overlap populations include the connection between two cube chains that fonn the sheath, Y1 

-Y2 at 0.11, and down the cube edges, Yl-Yl and Y2-Y2 at 0.11 and 0.16 respectively. The 

Yl-Yl interlayer contact falls fairly low on the list at 0.051, a weak interaction. The 

pairwise Y-Fe overlap populations are fairly unstriking, with distances from 2.7 to 3.3 A that 

inversely parallel the OP range 0.29-0.17. The Y3 with more yttrium neighbors also exhibits 

a larger OP, 0.28, for its distance to Fel at 3.05 A. A similar skewing of the environment 

around the late transition metal was noted in Sc^Ni^Tci. 

The Fe-Fe contact is found to be bonding, OP = 0.29, even though its distance is 

0.03A less than for an Fe-Fe single bond (Pauling). Its environment is certainly unlike that in 

elemental iron, and has self-bonding distances strongly influenced by covalent yttrium 

neighbors, in what has been called a matrix effect in metal-rich structures before.* The 

shortest Te-Te interaction, 3.71 A, has an antibonding OP of -0.033. Clearly, this tellurium 

separation is fixed mainly by the strong Y-Te interactions. The strongest Y-Y bonding and 

smallest volume (structural compression) of the three new non-hydride phases is for M = Ni, 

which may provide the driving force for the hydrogen absorption (below). 

In YjNiiTciDo,, the Y-Y pairwise overlap populations (Table 7) parallel decreases in 

distance much better than for YsFciTej. The largest deviation on the list, Y1-Y3 at 3.62A, 
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exhibits a low OP of 0.15, an expected effect on the basis of its location on the periphery of 

the metal-layer and closeness to tellurium atoms. The same occurs for the equivalent Y2-Y5, 

but slightly less. This effective oxidation of external metal-cluster bonds has been seen more 

clearly before.^ The shortest and internal Y-Y bonds, Y1-Y2, Y1-Y4, Y3-Y5 and Y4-Y5 all 

have OP's greater than 0.20, while those just mentioned on the periphery' have lower values. 

Comparison of Y^Ni^Te^Do , with YjFcjTe: shows that the metal-based electrons are 

redistributed away from the equivalent centered cubes and on the outside of the fold at 

deuterium, (Y4-Y2, Y4-Y3 at - 0.15 vs. Y1-Y3. Y2-Y3 at -0.23 respectively) and towards 

the cube edges (Y1-Y2, Y3-Y5 at -0.22 vs. Yl-Yl, Y2-Y2 at -0.16-0.11 respectively). 

This noticeable Y-Y bonding change on incorporation of hydrogen may arise from the 

relative oxidizing ability of hydrogen on neighboring metal atoms. The intcrlayer contact, 

Y1-Y2 falls fairly low on the list at 0.048, and is again a weak interaction. 

The Y-Ni pairwise interactions neatly parallel decreases in distances with ranges of 

2.7-3.2 A for 0.24-0.10 OP's and no statistically discemable deviations, in contrast to those 

for Y-Fe in YjPeiTe,. The Y-Ni distances are -0.14A less than the stronger Y-Fe 

interactions, but the former leaves more electrons available for Y-Y bonding and allows for 

the contraction of the yttrium cage around it, in what may be called a cooperative size and 

valence effect. Lastly, the Ni-Ni interaction is weakly bonding with an OP of only 0.019, 

while Te-Te down the short b axis has an OP of -0.006 (as expected from their distances). 

Also, the slightly antibonding Te-Te interaction in YjFeiTe, is now nonbonding (OP = 0) in 

YsNiiTeiDo j. Matrix effects are clearly less significant here. 
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Generally, the electronic calculations reveal the largely 2D metal-bonded character 

for both of the title compounds, and Y-M overlap populations that parallel well with the 

corresponding inverse distances. Hydrogen absorption evidently diminishes compression on 

the Te-Te and M-M neighbors, which is greatest for M = Ni from the volume trends, and also 

results in a better corrcspondcncc between bond lengths and bond orders for Y-Y and Y-M. 

The latter has been suspected as a possible contributing factor to a metal lattice instability in 

Sc^Tci.^ Additionally, the hydrogen absorption effects a redistribution of metal-based 

electrons away from the neighboring Y-Y bonds and less optimized and strong Y-M 

bonding. 

Structural Comparisons. The Y5M2Te2 (M = Fe, Co, Ni) compounds share very 

striking close structural relationships with both ScjNijTe, and GdjMnlj, as shown in Figure 

8. The longest known, Gd3MnIu contains single zigzag chains of Mn sheathed by a 

gadolinium framework (which may be traced to a substantial distortion of pairs of condensed 

octahedral chains), to form an isolated 1D metallic chain. This can be seen to be structurally 

related to that shown for Sc^NijTci and the title compounds. The present results shows that 

replacement of iodine in Gd3Mnl3 by tellurium, and necessary changes in composition and 

interstitials to give the RjNi^Te^ ® = Sc, Y) compounds allows condensation of the isolated 

chains to proceed in one of two ways: 1) the formation of a ScjNij double chain motif by the 

sharing of two vertices on the same edge (A), or 2) the formation of YsNi, by the sharing of 

the trans vertices (B). The sharing of trans-vertices results in the continuous polymerization 

of the metallic Gd3Mn-like rods into 2D sheets, while a sharing of two vertices on a single 

edge halts the condensation at the dimer stage. Why a metallic structure prefers one mode of 



www.manaraa.com

143 

condensation over another may be significantly influenced by matrix effects because of the 

structure-directing features described here and before, while electron count alone as a 

stability factor in metal-rich phases is less clear because of the delocalized bonding.' A good 

way to approach this problem quantitatively is not evident. Progress in the synthesis of low-

dimensional metallic phases far exceeds the theoretical predictability, while experiments 

continue to lead the way. 

Conclusions. The Y,M,Te; (M = Fe, Co. Ni) and Y^NiTe^Doji compounds have 

been synthesized by high-temperature solid-state techniques. Their structures comprise 

zigzag chains of the late-transition metal sheathed by yttrium atoms and condensed through 

trans vertices to form 2D bimetallic layers separated by a single layer of tellurium atoms. 

Only Y^NiiTe, is found to absorb hydrogen, which caused a rumpling of the bimetallic sheets 

through the binding of hydrogen in tetrahedral yttrium cavities. Band structure calculations 

confirm the largely 2D metal-bonded character of both title compounds, and show that 

hydrogen absorption and change in M reduces the structural compressions in the YjFe^Tei 

structure type. The structure type derives from GdjMnl , by a new type of metal condensation 

that contrasts with another mode in Sc5NiiTe2. 
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Table 1. Lattice parameters for the YsMiTei {Cmcni) and YsNiiTciH^ {Pnnia) phases." 

compound ^v(A) 6(A) r(A) nA') 

YjFeJe: 3.9594(3) 15.057(1) 15.216(1) 907.1(2) 

YjCoJe, 3.9421(6) 15.092(2) 15.021(2) 893.7(4) 

Y,NiJc, 3.977(1) 15.035(2) 14.857(3) 888.4(5) 

loaded compositions 

YjFeJejH, 3.958(1) 15.058(6) 15.214(7) 906.7(6) 

Y,Co:Te,H, 3.942(2) 15.090(5) 15.020(4) 893.4(5) 

YjNiJejHo/ 14.359(4) 4.020(1) 15.858(3) 915.5(4) 

Y,Ni,Te,H,„ 14.353(1) 4.0213(4) 15.853(1) 915.0(1) 

Y,Ni,Te,HoH 14.354(3) 4.0163(7) 15.866(2) 914.7(3) 

Y,Ni,Te,H,u 14.364(1) 4.0172(4) 15.880(1) 916.4(1) 

Y5NijTe:H.o 14.352(1) 4.0132(5) 15.876(1) 914.4(2) 

Y5Ni:Te,H,o 14.368(1) 4.0302(4) 15.951(1) 923.7(1) 

Y,Ni,Te:H,„ 14.369(2) 4.0327(5) 15.951(2) 924.3(2) 

refined composition 

Y,Ni,Te,H,' 14.356(2) 4.0209(3) 15.857(1) 915.3(1) 

Y5Ni,TejDo4u,/ 14.3678(7) 4.0173(2) 15.8787(7) 916.50(9) 

Y5Ni,Te,Do4ui' 14.3282(2) 4.01167(5) 15.8359(2) 910.25(2) 

" Lattice constants from guinier powder ditlraction data at 23 "C. 
^ All hydrides, with the unit cell transformation to the new space group (a, b, c) - (b, c, a.). 

Sample used in the X-ray single crystal structure determination for heavy atom refinement. 
'' Lattice constants from X-ray powder diffraction at 23 "C. 
'• Lattice constants from neutron powder diffraction data at -259 "C. 
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Table 2. Single crystal X-ray data collection and refinement parameters for YjFeTe, (1st 
value) and YsNiiTe^H, (2nd value). 

Formula weight.g mol' 

Crystal System 

Space group, Z 

Aaic g/cm^ 

^ (Mo K.), cm ' 

Crystal Data 

811.42.817.12 

Orthorhombic 

Cnicni (No. 63), 4; Pumn (No. 62), 4 

5.976, 5.897 

41.421,41.265 

DifTractometer 

Temperature, "C 

Radiation, 20„„, 

Reflections measured 

Data Collection 

Rigaku AFC6R, Bruker AXS CCD 

23 

Mo K„ 56" 

(h, ±k, ±1), (±h, ±k, ±1) 

Refinement 

Number of measured reflections 3106, 7740 

Number of unique observed 305. 784 
reflections (/ > 3o,) 

Number of variables 31. 56 

R(F„, F..-); Z?.."" % 4.6.4.2; 3.4, 7.8 

- R = £i|FJ-|Fcl|/S|FJ; = [2u'(|FJ-|FJ)-/L»i<F„)M' % 
" R = 2|F„--F/|/SF„-; R^ = [Su<(F„=-F/)-VSuF„-)-]' % u- = \/a\ 
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Table 3. Positional and isotropic-equivalent thermal parameters for YjFejTe,. 

Atom" y -

Tel 0.3831(2) 0.5388(3) 0.89(7) 

Y1 0.0369(2) 0.6187(2) 0.9(1) 

Y2 0.2556(2) 0.3750(2) 1.0(1) 

Y3 0.6061(3) 1/4 1.0(2) 

Pel 0.4034(4) 1/4 1.0(3) 

Fe2 0.8263(5) 1/4 1.0(2) 

" All atoms on m or ni2m with .v = 0. 

^ fl,,-(871-/3)2,2,U„a,-a;a, a. 
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Table 4. Positional and isotropic-equivalent thermal parameters from the single crystal X-ray 
data, YjNiiTe^H, (1" line), and neutron powder data, YsNiiTeiDo j,,), (2"'' line). 

Atom" .r r {hrf 

Tel 
0.96613(6) 
0.9659(3) 

0.62734(6) 
0.6264(5) 

0.85(2) 
0.27(4) 

Tc2 
0.95423(7) 
0.9552(2) 

0.12999(6) 
0.1278(5) 

0.94(2) 
0.27(4) 

Y1 
0.1489(1) 
0.1483(2) 

0.74196(9) 
0.7427(2) 

0.84(2) 
0.23(6) 

Y2 
0.8864(1) 
0.8857(3) 

0.81019(9) 
0.8098(2) 

0.86(2) 
0.26(6) 

Y3 
0.8823(1) 
0.8816(3) 

0.44668(9) 
0.4460(2) 

0.94(2) 
0.38(6) 

Y4 
0.2079(1) 
0.2071(2) 

0.37406(3) 
0.3736(4) 

0.91(2) 
0.28(5) 

Y5 
0.1376(1) 
0.1392(2) 

0.00103(9) 
0.0001(2) 

0.93(2) 
0.28(6) 

Nil 
0.7405(1) 
0.7413(2) 

0.3218(1) 
0.3217(2) 

0.93(3) 

0.53(5) 

Ni2 
0.2470(1) 
0.2465(2) 

0.5655(1) 
0.5653(2) 

1.02(3) 
0.27(5) 

D 0.2204(6) 0.873(1) 0.9(2) 

" All atoms on m, with = 1/4. 

" fl^ = (87i-/3)L,2,U„a,V3,3,-
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Table 5. Powder neutron data collection and refinement parameters for YsNiiTe.Do^,,,). 

Formula weight 817.99 

Space Group, Z Puma (No. 62), 4 

Temperature ("C) -259 

t/„i, (g/cm^) 5.969 

Number of data 8486 

Number of reflections (fitted) 3707 

Variables 72 

Residuals; R^, (%) 3.19, 4.59 
y r 3.509 

Scattering lengths (10 '-cm)'" Y, 0.775 

Ni, 1.030 

Te. 0.580 

D, 0.667 

- R, = [2(|/,-/,|)/2/J; K, = [2(/„-/,)-/2u/„-]' -

'' Reference 24. 
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Table 6. Selected metal-metal distances (A) and the corresponding pairwise overlap 
populations in YjFciTe,. 

atom I atom 2 distance OP atom 1 atom 2 distance OP 

Y1 Y3 3.543(4) 0.233 Yl Fe2 2.870(6) 0.287 

Y2 Y3 3.551(3) 0.231 Y3 Fel 3.051(9) 0.278 

Y3. Y3 3.9594(3) 0.163 Y2 Fe2 2.944(3) 0.267 

Yjt' Y2 3.8042(3) 0.160 Yl Fel 2.953(3) 0.249 

Y1 Y2 3.699(3) 0.108 Y2 Fel 2.928(6) 0.244 

Yl" Yl 3.987(3) 0.107 Y3 Fc2 3.316(9) 0.167 

Yl' Yl 3.779(6) 0.051 

YZ" Y2 3.9594(3) 0.044 Fel Fc2 2.296(4) 0.289 

Yl" Yl 3.9594(3) 0.035 

" Short axis distance. 
* Intralayer distance. 
' Interlayer distance. 
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Table 7. Selected metal-metal distances (A) and the corresponding pairwise overlap 

populations in YsNiiTeiDo ,." 

atom 1 atom 2 distance OP atom 1 atom 2 distance OP 

Yl* Y2 3.502(5) 0.232 Nil Y2 2.715(4) 0.237 

Y1 Y4 3.552(5) 0.219 Ni2 Y3 2.725(3) 0.234 

Y3-'' Y5 3.577(5) 0.215 Nil Yl 2.750(3) 0.231 

Y4 Y5 3.590(5) 0.200 Ni2 Y5 2.788(3) 0.219 

Y2 Y5 3.634(5) 0.158 Nil Y3 2.814(5) 0.207 

Y3 Y4 3.715(6) 0.151 Ni2 Y2 2.808(5) 0.206 

Yl Y3 3.624(4) 0.150 Ni2 Y4 3.088(7) 0.127 

Y2 Y4 3.772(6) 0.140 Nil Y4 3.131(7) 0.116 

Yl' Y2 3.910(5) 0.048 Ni2 Yl 3.142(5) 0.107 

Nil Y5 3.180(5) 0.102 

D Y4 2.259(4) 0.165 

D Yl 2.31(2) 0.133 Nil Ni2 2.694(2) 0.019 

D Y5 2.32(2) 0.125 

" Distances are calculated from the more accurate neutron powder diffraction results. 
* Intralayer distance. 
' Interlayer distance. 
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Supporting Information 
Two-Dimensional Metallic Compounds YsMiTe; (M = Fe, Co, Ni) That are 

Related to GdjMnls. Hydrogen Absorption in the YjNiiTejH, Derivative 

Paul A. Maggard, Robert W. Henning, and John D. Corbett 

Table SI. Single Crystal X-ray Data Collection and Refinement Parameters for Y^PeiTe,. 

Formula weight,g mol' 811.42 

Space group, Z Cmcm (No. 63), 4 

Lattice parameters, A 

a 3.9594(3) 

b 15.057(1) 

c 15.216(1) 

K (A') 907.1(2) 

g/cm- 5.976 

Radiation; 20max Mo K^; 56" 

Octants measured h, ±k, ±1 

Scan method (0-26 

Temperature, "C 23 

Absorption Method 2 ijr-scans, DIFABS 

Relative transmission range 0.48 - 1.43 

/i, cm ' (Mo K.) 41.421 

Number of reflections: 

measured 3106 

unique observed (1 ^ 3a(l)) 305 

Number of variables 31 

Residuals /?; % 4.6; 4.2 

Goodness of fit 1.39 

Secondary Ext. 2.8(2) X 10-^ 

- R = 2||FJ-|F,l|/2iFJ; = [2o)(|FJ-|FJ)^/2o)(FJ^]"^ w = \/a'. 
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Table S2. Ui, (A*) values for YjFeiTei 

Atom U l l  U22 U33 U12 U13 U23 

Tel 0.0109(8) 0.011(1) 0.011(1) 0 0 0 

Y1 0.013(1) 0.014(2) 0.009(1) 0 0 0 

Y2 0.012(1) 0.011(2) 0.013(2) 0 0 0 

Y3 U.U12(2) U.Ul2(2) U.Ul5(2) U 0 0 

Fel 0.017(3) 0.015(4) 0.007(3) 0 0 0 

Fe2 0.008(3) 0.016(3) 0.012(3) 0 0 0 
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Table S3. Interatomic distances < 4.oA in YjFcjTev 

Atom Atom x Distance Atom Atom x Distance 

Tel Tel 2x 3.9594(3) Y3 Tel 2x 3.217(2) 

Tel 3.714(5) Yl 4x 3.543(4) 

Y1 2x 3.281(3) Y2 4x 3.551(3) 

Yl 2x 3.334(3) Fel 3.051(9) 

Y2 3.146(3) Fe2 3.316(9) 

Y2 2x 3.162(3) 

Y3 3.217(2) Fel Yl 4x 2.953(3) 

Y2 2x 2.928(6) 

Y1 Tel 2x 3.281(3) Y3 3.051(9) 

Tel 2x 3.334(3) Fe2 2x 2.296(4) 

Yl 3.779(6) 

Y2 2x 3.699(3) Fe2 Yl 2x 2.870(6) 

Y3 2x 3.543(4) Y2 4x 2.944(3) 

Fel 2x 2.953(3) Y3 3.316(9) 

Fe2 2.870(6) Fel 2x 2.296(4) 

Y2 Tel 3.146(3) 

Tel 2x 3.162(3) 

Yl 4x 3.699(3) 

Y2 3.8042(3) 

Y3 2x 3.551(3) 

Fel 2.928(6) 

Fe2 2x 2.944(3) 
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Table S4. Single Crystal X-ray Data Collection and Refinement Parameters for YjNiiTeiCH). 

Formula weight.g mol' 817.12 

Space group. Z Puma (No. 62), 4 

Lattice parameters, A 

a 14.384(4) 

h 4.026(2) 

c 15.895(7) 

K (A^) 920.5(6) 

g/cm^ 5.897 

Radiation; 20^, Mo K,; 56" 

Octants measured ±h, ±k, ±1 

Scan method (0-20 

Temperature, "C 23 

Absorption Method SADABS 

Relative transmission range 0.73 - 1.69 

fi, cm ' (Mo KJ 41.265 

Number of reflections: 

measured 7740 

unique observed (1 ^ 3a(l)) 784 

Number of variables 56 

Residuals R\ /?„,•* % 3.4; 7.8 

Goodness of fit 0.58 

Secondary Ext. 1.3(2) X 10' 

" R = 'L = [2o)((F„-.F/)-/La)F„-)-]' v 
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Table S5. U,, (A*) values for YjiNizTeiH. 

Atom U l l  U22 U33 U12 U13 U23 

Tel 0.0109(5) 0.0127(5) 0.0089(5) 0 0.0001(4) 0 

Te2 0.0131(5) 0.0102(4) 0.0122(5) 0 -0.0016(4) 0 

Y1 0.0098(7) 0.0118(7) 0.0103(7) 0 -0.0005(5) 0 

Y2 0.0110(7) 0.0119(7) 0.0099(7) 0 0.0002(5) 0 

Y3 0.0140(8) 0.0130(7) 0.0087(7) 0 -0.0014(5) 0 

Y4 0.0120(7) 0.0112(6) 0.0112(7) 0 -0.0003(6) 0 

Y5 0.0136(8) 0.0118(7) 0.0100(7) 0 0.0007(5) 0 

Nil 0.010(1) 0.012(1) 0.0138(9) 0 -0.0005(7) 0 

Ni2 0.012(1) 0.013(1) 0.013(1) 0 -0.0001(8) 0 
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Table S6. Interatomic distances < 4.0A in YsNi^TenCH). 

Atom 1 Atom 2 Mult. Distance Atom 1 Atom 2 Mult. Distance 

Tel Y1 3.199(2) Y2 Y1 3.929(2) 

Y2 3.125(2) Y1 3.514(2) 

Y3 3.114(2) Y4 2x 3.804(2) 

Y3 2.\ 3.192(2) Y5 2x 3.630(2) 

Y4 2.\ 3.212(2) N i l  2x 2.723(2) 

Ni2 2.814(2) 

Te2 Y! 2.\ 3.224(2) 

Y2 2x 3.196(2) Y3 Tel 3.114(2) 

Y4 3.544(2) Tel 2x 3.192(2) 

Y5 3.341(2) Y1 2x 3.639(2) 

Y5 2.\ 3.184(2) Y4 2x 3.722(2) 

Y5 3.616(2) 

Y1 Tel 3.199(2) N i l  2.847(2) 

Te2 2x 3.224(2) Ni2 2x 2.748(2) 

Y2 3.929(2) 

Y2 3.514(2) Y4 Tel 2x 3.212(2) 

Y3 2x 3.639(2) Te2 3.544(2) 

Y4 2x 3.564(2) Y1 2x 3.564(2) 

N i l  2x 2.759(2) Y2 2x 3.804(2) 

Ni2 3.140(3) Y3 2x 3.722(2) 

Y5 2x 3.614(2) 

N i l  3.148(3) 

Y2 Tel 3.125(2) Ni2 3.094(3) 

Te2 2x 3.196(2) 
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Table S6. (continued) 

Te2 3.341(2) Ni2 Yl 3.140(3) 

Te2 2x 3.184(2) Y2 2.814(2) 

Y2 2x 3.630(2) Y3 2x 2.748(2) 

Y3 3.616(2) Y4 3.094(3) 

Y4 2x 3.614(2) Y5 2x 2.802(2) 

N i l  3.181(3) N i l  2x 2.701(2) 

Ni2 2x 2.802(2) 

Yl 2x 2.759(2) 

Y2 2x 2.723(2) 

Y3 2.847(2) 

Y4 3.148(3) 

Y5 3.181(3) 

Ni2 2x 2.701(2) 
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Table S7. Interatomic distances < 4.0A in YjNiiTeiDoj,,,,. 

Atom 1 Atom 2 Mult. Distance Atom 1 Atom 2 Mult. Distance 

Tel Y1 3.196(6) Y2 Y1 3.910(5) 

Y2 3.124(9) Y1 3.502(5) 

Y3 3.102(9) Y4 2x 3.772(6) 

Y3 2x 3.180(5) Y5 2x 3.634(5) 

Y4 2x 3.189(4) Nil 

Ni2 

2x 2.715(4) 

2.808(5) 

Te2 Y1 2x 3.229(6) 

Y2 2x 3.193(5) Y3 Tel 3.102(9) 

Y4 3.554(4) Tel 2x 3.180(5) 

Y5 3.322(6) Y1 2x 3.624(4) 

Y5 2x 3.155(7) Y4 

Y5 

2x 3.715(6) 

3.577(5) 

Y1 Tel 3.196(6) Nil 2.814(5) 

Te2 2x 3.229(6) Ni2 2x 2.725(3) 

Y2 3.910(5) 

Y2 3.502(5) Y4 Tel 2x 3.189(4) 

Y3 2x 3.624(4) Te2 3.554(4) 

Y4 2x 3.552(5) Y1 2x 3.552(5) 

Nil 2x 2.750(3) Y2 2x 3.772(6) 

Ni2 3.142(5) Y3 2x 3.715(6) 

D 2.31(2) Y5 

Nil 

2x 3.590(5) 

3.131(7) 

Y2 Tel 3.124(9) Ni2 3.088(7) 

Te2 2x 3.193(5) D 2x 2.259(4) 
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Table S7. (continued) 

Te2 3.322(6) Ni2 Y1 3.142(5) 

Te2 2x 3.155(7) Y2 2.808(5) 

Y2 2x 3.634(5) Y3 2x 2.725(3) 

Y3 3.577(5) Y4 3.088(7) 

Y4 2x 3.590(5) Y5 2x 2.788(3) 

Nil 3.180(5) Nil 2x 2.694(2) 

Ni2 2x 2.788(3) 

D 2.32(2) D Y1 

Y4 2x 

2.31(2) 

2.259(4) 

Y1 2x 2.750(3) Y5 2.32(2) 

Y2 2x 2.715(4) 

Y3 2.814(5) 

Y4 3.131(7) 

Y5 3.180(5) 

Ni2 2x 2.694(2) 
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FigHrc I. Neutron powder pattern of Y5Ni2Te2Do4i divided into two regions, J = 0.6—1.6 (A) and 1.6—3.oA (B). Shown in 
each are, from top to bottom, the experimental pattern with fitted background; the calculated patterns for the major 
and impurity phases, the reflections used (tick marks), and the difference spectrum; Scales are drawn for the 
experimental and major phases and to define the zero intensities, with all phases drawn to same scaling. 
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FigMrc 2. Unit cell of Y5M2Te2 (M = Fe, Co, Ni) viewed down the [ 100] axis, with 99.9% thermal ellipsoids. 
Y-Y distances labeled in A for M = Fe, while the shortest interlayer and Te—Te distances highlighted with 
dashed lines. Dark atoms are Te; lightly shaded, M; unfilled, Y. 
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Figarc 3. Near-[OOI ] view of a single infinite YjM^ sheet normal to that in Figure 2. The Y-M, 
M-M and Y-Y distances are labeled in A for M = Fe. Dark atoms are M; unfilled, 
Y. Mirror planes He in horizontally through MI and M2 and in the plane. 
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Figure 4. Near-[010] section of the YjNi^Te^Do+i,,, unit cell, with Y- Y distances labeled in 
Dark atoms are Te; lightly shaded, Ni; unfilled, Y; hatched, D. 
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Figarc 5. Near-[IOO] view of a single infinite YjNi^D sheet, with Y—Ni, Ni—Ni, and Y—D distances labeled in A. 
Shaded atoms are Ni; unfilled, Y; hatched, D. Bonds in the tetrahedral yttrium environment about 
deuterium are shaded for clarity. Horizontal mirror planes contain all atoms. 
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Figure 6. Total densities-of-states (DOS, left) and metal—metal crystal orbital overlap populations (COOP, 
right) curves for YjFe^Tej. The separate yttrium and iron contributions are projected out. The 
COOP curves are for indicated pairwise interactions, all drawn to the same scale. 
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FigMrc 7. Total densities-of-states (DOS, left) and metal—metal crystal orbital overlap populations (COOP, 
right) curves for Y5Ni2Te2Do5. The separate yttrium and nickel contributions are projected out. 
The COOP curves are for indicated pairwise interactions, all drawn to the same scale. 
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YjNiJej 

Figure 8. Two methods of condensation of the single 1D chains in Gd3Mnl3 to (A) pairs of 
the ID chains in ScsNijTe^ and (B) infmite chains in the 2D layers in 
YjNijTe^. Dark atoms are Te or I; lightly shaded, Ni or Mn; unfllled, Sc, Y, or 
Gd, according to respective structures. 
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CHAPTER 7. SceMTe. (M = Mn, Fe, Co, Ni): MEMBERS OF 
THE FLEXIBLE Zr^CoAl: -TYPE FAMILY OF COMPOLTNDS 

A paper submitted to Inorganic Chemistry 

Paul A. Maggard and John D. Corbett 

Department of Chemistry, Iowa State University, Ames, lA 50011 

Abstract 

ScoMTcj (M = Mn, Fe, Co. Ni) compounds have been prepared by high-temperature 

solid-state techniques, and their structures determined to be hexagonal P^lm (no. 189) with Z 

= 1, « = 7.662( 1), 7.6795(2), 7.6977(4), 7.7235(4)A, c = 3.9041(9), 3.8368(2), 3.7855(3), 

3.7656(3)A and V= 198.51(8), 195.96(2), 194.26(3), 194.53(2)A\ for M = Mn, Fe, Co and 

Ni respectively. Single crystal structures were determined for M = Fe and Ni, while M = Mn 

and Co were assigned on the basis of powder diffraction data. The Sc^MTe, compounds 

belong to a large family with the Zr^CoAU type structure, an ordered variant of the Fe^P 

structure. The structure contains face-shared tricapped trigonal prisms of scandium centered 

by either the late transition metal or tellurium atoms. The SCbMTe, compounds are the 

electron-poorest examples of this structure type. Extended HUckel band calculations for M = 

Fe and Ni show both compounds are predicted to be metallic and largely ID in metal-metal 

bonding. 
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Introduction 

The study of inetal - metal bonding in solid-state compounds has been facilitated by 

the discovery of many new phases of the group 3 transition-metal chalcogenides. These 

includc ScTc," (Sc,Y)sTc,,- and Sc^Tci.' However, the chcmistry and metal-metal bonding 

can be enriched and enlarged by the addition of a third metal which stabilizes new metal 

frameworks, i.e. a late transition metal. Inclusion of a late transition metal in the ScsNiiTci,"* 

and Y<M2Tej (M = Fe. Co, Ni)' have provided insight into the factors that influence metal-

bonded structures. Interestingly, Sc,Ni;Te; contains double ID metal chains and Y5Ni,Te2, 

2D metal layers, and both may be shown to arise from the condensation of the Gd]|I,Mn type 

phases" that contain single ID metal chains. 

A growing list of compounds are known to crystallize in the ordered variant of the 

Fe,? structure type known as the Zr„CoAU type.^ * In this instance, the unit cell of Fe,P is 

tripled, with the early transition metal on the iron positions and the late transition metal and 

main-group element ordered between the two independent phosphorus sites. Recent 

examples of this type include Zr^MTci (M = Mn, Fe, Co, Ni, Ru, Pt),' Hf6MSb2 (M = Fe, Co, 

Ni),'" Zr^CoAsi," Dy^MTe, (M = Fe, Co, Ni),'- and RoCoTej ® = Y, La).'- Crystallization of 

these phases in the Zr^CoAlj structure type has been attributed to the size mismatch of the 

late transition metals and main-group elements.'' A similar analogy was found between the 

SCjNijTe/ and Hf5Co,.,Pj.J^ compounds, with the former is an ordered variant of the latter. 

Concomitant with this ordering is a decrease in the metal-framework dimensionality from 3D 
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to ID. Described in this paper is a series of new Sc^MTe, (M = Mn, Fe, Co, Ni) compounds 

which represent the electron-poorest Zr^CoAU types that have been reported. 

Experimental Section 

Syntheses. The synthetic methods for the Sc^MTe; phases were parallel to those that 

have been described elsewhere."* The elements were used as received: Sc turnings, Aldrich 

99.7%; Te powder, Aldrich 99.99%; Ni powder, Alfa 99.95%. Preparation of SciTej has 

been described previously.^ An appropriate mixture of ScjTej, Sc, and Mn, Fe, Co or Ni was 

pelletized, wrapped in molybdenum foil, and loaded into tantalum tubing inside a He-filled 

glovebox. (At high temperatures, the late transition metals in contact with the tantalum will 

dissolve, but this occurs to a much smaller extent when the container wall is protected by 

molybdenum foil.) The tantalum tubing was then arc-welded shut under argon and further 

scaled inside evacuated fused-silica tubing. Heating between 950 °C and 1025 °C for 72 to 

168 hours and slow cooling (5 °C/hr) provided 2 90% yields of the four compounds 

according to Guinier powder diffraction data. The impurities were ScTe, unreacted scandium 

metal (visual identification), and the appropriate late transition metal. 

Powder X-ray DifTraction. The powder diffraction patterns of Sc^MTei were 

obtained with the aid of an Enraf-Nonius Guinier powder camera and monochromatic Cu Ka, 

radiation. The powdered samples were mixed with standard silicon (NIST) and placed 

between two strips of cellophane tape on a frame that mounted on the sample rotation motor. 

Lattice parameters (Table I) were obtained with the aid of least squares refinement of the 
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indexed lines with the 26 values calibrated by a nonlinear fit to the positions of the standard 

silicon lines. 

Single Crystal DifTraction. Several irregularly shaped, silvery crystals were 

mounted inside 0.3-mm i.d. glass capillaries and then sealed off and mounted on metal pins. 

The cr>stal qualities were checkcd by means of Lauc photographs. Diffraction data sets for 

the best crystals from reactions loaded as SCftFeTei and Sce,NiTe, were measured on a Rigaku 

AFC6R difTractometer (with monochromated Mo Ka, radiation) at room temperature. 

Twenty-five centered reflections gathered from a random search were used to determine 

provisional lattice constants and the probable crystal systems. The data were corrected for 

Lorentz and polarization effects, and further corrected for absorption with the aid of 3 and 2 

ij»-scans, respectively. Out of 1258 (Fe) and 902 (Ni) measured reflections to 26n,„ = 60° 

and 54°, 1225 and 863 had / > 3o,, and 253 and 239 of these were unique, respectively. 

Extinction conditions and statistical evidence for noncentricity indicated four possible space 

groups. Attempts to solve the structures by direct methods (SHELXS'"*) and to refine these 

with the package TEXSAN" were successful only in space group P^lm (no. 189). After 

isotropic refinement, the data averaged with /?,ve = 6.4 and 5.5% for I > 0. The final 

anisotropic refinements were R(F)IR^ = 3.8/3.3 and 3.1/4.0% for the compositions Sc^FeTei 

and SCbNiTc>. Some refinement data for these studies are listed in Table 2, and the atomic 

positions and isotropic-equivalent temperature factors are given in Table 3. Additional data 

collection and refinement parameters, the anisotropic displacement parameters, and the 

complete distance tabulations are in the Supporting Information. These as well as the FJF^ 

listing are also available from J.D.C. 
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Band Calculations. Extended HUckel calculations were carried out within the tight-

binding approximation"" for the full structures of ScoFeTe, and Sc^NiTci at 140 k-points 

spread over the irreducible wedge. H„ parameters employed were the values iterated to 

charge consistency for Sc from SciTe,' and for Fe and Ni from Sc^FeTe, and ScsNiTci (this 

work) (cV): Sc 4s, -6.75; 4p, -3.38; 3d, -6.12; Fc 4s. -5.50; 4p, -2.45; 3d, -6.86; Ni 4s, -5.58; 

4p, -2.41; 3d. -7.82; Te 6s, -21.20; 6p, -12.00. 

Results and Discussion 

Structural Description. The structure along (001) is illustrated in Figure I for 

SCoNiTcj, with selected scandium distances marked. The late transition metal (M) centers the 

tricapped trigonal prisms (or tetrakaidecahedra) of scandium that stack and share faces along 

the c axis to form a linear chain. The tricapped trigonal prismatic chains are interconnected 

via Scl -Sc2 bonds at 3.460(2)A and 3.411(3)A for M = Fe and Ni, respectively. The shorter 

scandium distances are around the triangular faces of the trigonal prisms, Sc 1 - Sc 1, at 

3.151(3) A and 3.201(5) A, and also on the capped rectangular faces, Scl -Sc2, at 3.234(1) A 

and 3.248(2) A for M = Fe and Ni as before. The next shortest scandium distances in the 

structure are along the c axis for both Scl - Scl and Sc2-Sc2, 3.8368(2) A (Fe) and 3.7656(3) 

A (Ni). Generally, the c axis and interchain distances contract between Fe and Ni, while the 

triangular faces and capping distances around the scandium trigonal prisms (Scl-Sc2) 

expand. 
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An isolated Sc^M trigonal prismatic chain is shown in Figure 2 with the repeat and 

Sc- M distances for nickel. The shaded bonds emphasize the scandium trigonal-prismatic 

environment around the late transition metal, with Scl - M lengths of 2.644(1 )A and 

2.638(2)A, for M = Fe and Ni respectively, while the capping atoms, Sc2-M, are at 

2.982(2)A and 3.032(3)A. 

The tricapped trigonal prisms about the tellurium atoms, highlighted with dashed 

lines in Figure 1, arc arranged and stacked in an analogous fashion as around the late 

transition metal, but with some expansion. Six of the Te-centcred chains surround each 

SCh.2M chain with internal Sc2-Te bonds of 3.0547(6) A and 3.0340(8) A, while the capping 

distances to Scl are 3.000( 1) A and 3.004(2) A for M = Fe and Ni, respectively. The bonds 

defming the trigonal prisms are expanded compared with the face-capping distances and also 

expanded compared with the late transition metal environment, as would be expected from 

size differences. 

Calculations. The Zr^CoAU-type compounds containing scandium are the electron-

poorest known in this group, while Zr^MTe, (M = Mn, Fe, Co, Ni, Ru, Pt),'' Hf^MSb, (M = 

Fe, Co, Ni),'° and Zr^CoAs^" all contain electron-richer transition metals, and with metal-

metal bonding arrays that have been reported to be fully three-dimensional. Similar 

comparisons of other scandium systems such as (Sc,Y)gTe3- and ScjNijTej * with electron-

richer analogues also show that the lowered electron concentrations in the former lead to both 

overall weakening of metal-metal interactions and lowered dimensionality. Electronic 

calculations seemed necessary to understand this aspect in the SccMTej phases better. 
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Figure 3 shows the total DOS for Sc^FeTei and Sc^NiTei with the two transition-

metal contributions projected out. The Fermi level falls within a large conduction band 

composed primarily of scandium d states intermi.xed with some late transition metal d 

character. Iron d orbitals are higher in energy (about -7.2 eV) and mix more with the 

scandium d slates than do those for nickel (about -8.0 cV). This results in the larger 

contribution of the iron d states at the Fermi level. 

The COOP (crystal orbital overlap population) curves for the total Sc-M and Sc-Sc 

bonding interactions for both systems are plotted in Figure 4. (The M-M interactions are 

very small.) In both cases, the Sc-M interactions appear to be optimized, with the Fermi 

level lying close to the crossover between bonding and antibonding states. The 

host-interstitial bonding is likewise optimized for the systems Zr^MTe, (M = Mn, Fe, Co, Ni, 

Ru, Pt)"* and Zr^CoAs:." On the other hand, the Sc-Sc COOP data show that many bonding 

states remain above the Fermi level. 

Comparisons of bond distances with overlap populations allow one to ascertain where 

matrix etTects may be important in determining distances as opposed to real bonding effects. 

For this purpose, painvise overlap populations (OP) and distances in Sc^FeTe, and Sc^NiTe, 

are given for Sc-Sc, Sc-M, and M-M in Table 4. The first large Sc-Sc OP, and presumably 

a strong bond, occurs for ScI-ScI on the triangular (end) faces of the trigonal prisms, 0.228 

and 0.219 for M = Fe and Ni. The face caps on the trigonal prism, Scl -Sc2, likewise have 

sizable 0.141 and 0.146 values. Two of the three next largest overlap populations (^ 0.056) 

occur for Scl - Scl and Sc2-Sc2 down the short c axis for interactions that appear to be 
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weaker. The interchain overlap populations for Scl -Sc2 (0.036 to 0.041), which reflect the 

dimensionality of the metal-metal bonding, are < 20% of the larger internal populations. 

Whether these are very significant is doubtful; as usual, bonds located on the periphery of the 

metal cluster chains have substantially lower bond populations.* The metal-metal bonding is, 

ut the least, located prefereiiliully within the ID cimins of tricappcd trigonal prisms, while 

bond populations fall off regularly with an increased number of tellurium neighbors. 

The Sc-M overlap populations show similar trends for M = Fe and Ni. The Scl -M 

overlap populations for each contact within the trigonal prisms (0.267, 0.189) are about 

twice as large as those for the capping Sc2-M populations (0.140,0.087), in parallel with the 

distances and always less for nickel. Contrastingly, M-M interactions between the late 

transition metal neighbors along the chain are very small and slightly antibonding. 

The overall trend from Fe to Ni is that four out of the five Sc-Sc overlap populations 

increase, while those for both Sc - M bonds decrease. This represents a reapportioning of the 

metal electrons from the Sc-M framework to the Sc-Sc bonds as the late transition metal d 

orbitals fall in energy and take on a more core-like character. 

Conclusions. New phases of the composition Sc^MTe, (M = Mn, Fe, Co, Ni) have 

been synthesized in the Zr^CoAU type structure. A growing number of examples for this 

structural type demonstrates its structural and electronic flexibility. Size differences between 

the later transition metal and the main-group element result in the ordered occupancy of the 

two phosphorus sites in Fe^P. The metal-metal bonding character is more ID in character 

than for electron-richer analogues of zirconium, etc., while the overlap population trends 
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reflect how the metal-based electrons redistribute from Sc - M to Sc - Sc bonds between Fe 

and Ni, and probably over the whole series Mn-Ni. 
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Table 1. Lattice Constants (A) and Cell Volumes (A^) for Sc^MTci (M = Mn, Fe. Co, Ni). 

Compound u c V 

Sc^MnTci 7.662(1) 3.9041(9) 198.51(8) 

SCftFeTe^ 7.6795(2) 3.8368(2) 195.96(2) 

SCbCoTe, 7.6977(4) 3.7855(3) 194.26(3) 

Sc^NiTe, 7.7235(4) 3.7656(3) 194.53(2) 

" Guinier data, Cu Ka,, 23 °C, with 11, 15, 18, 17 indexed lines for Mn, Fe, Co, and Ni, 
respectively. 

Table 2. Some Data Collection and Refinement Parameters for Sc^MTe:, M = Fe {1st value) 
and Ni (2nd value)."' 

formula weight 597.42, 583.67 

space group, Z PS2ni (no. 189), 1 

d,,|,,g/cm^ 4.921,4.982 

cm ' (Mo Ka,) 139.29, 145.99 

R/R," (%) 
3.8/3.3.3.1/4.0 

" Lattice parameters in Table 1. 

" H = II|F„HFJ|/IiFJ; = [Iut|FJ-lFJ)^/Vu<FJ-]'% u' = 1/ov 
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Tabic 3. Positional and Isotropic-Equivalent Thermal Parameters for Sc^MTe^, M = Fe and 
Ni, respectively. 

Atom .r y -

Scl 0.2369(2) 0 '/i 0.77(6) 

Sc2 0.6117(3) 0 0 0.80(6) 

M 0 0 0 1.24(4) 

Tc 1/3 2/3 0.62(2) 

~ 2,2,U,,3, a, 
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Table 4. Selected Metal-Metal Distances (A) and Overlap Populations in Sc^MTei (M = Fe, 
Ni). 

distance overlap population per bond 

atom 1 atom 2 Fe Ni Fe Ni 

Scl Scl- 3.151(3) 3.201(5) x2 0.228 0.219 

Scl Sc2 3.234(1) 3.248(2) x4 0.141 0.146 

Scl Scl' 3.8368(2) 3.7656(3) x2 0.048 0.056 

Scl Sc2' 3.460(2) 3.411(3) x2 0.036 0.041 

Sc2 Sc2'' 3.8368(2) 3.7656(3) x2 0.002 0.014 

Scl M 2.644(1) 2.638(2) x2 0.267 0.189 

Sc2 M 2.982(2) 3.032(3) 0.140 0.087 

M' M 3.8368(2) 3.7656(3) x2 -0.008 -0.007 

" Distance w ithin the triangular faccs of the trigonal prism. 

'' Distance along r axis. 

' Interchain separation. 



www.manaraa.com

183 

Supporting Information 

SCftMTc; (M = Mn, Fe, Co, Ni): Members of the Flexible Zr^CoAU-Type Family of 
Compounds 

Paul A. Maggard and John D. Corbett 

Table SI. Single Crystal X-ray Data Collection and Refinement Parameters for Sc^MTe,, M 
= Fe (1 St value) and M = Ni (2nd value). 

Formula weight 580.81,583.67 

Space group, Z P-62m (no. 189), I 

Lattice parameters and cell volume 

ti (A) 7.6795(2), 7.7235(4) 

c(A)  3.8368(2), 3.7656(3) 

K(A^) 195.96(2), 194.53(2) 

g/cm^ 4.921,4.982 

Radiation; 20n^, Mo Ka; 60^ 54" 

Octants measured +h, ±k, ±1 ( x2) 

Temperature, "C 23 

Absorption method 3i|r-scans, 2i(f-scans 

/i. Mo K„ (cm ') 139.29, 145.99 

Reflections: measured 1258, 902 

observed and unique (1 3a) 253,239 

Number of variables 14 (both) 

R,„, % (I > 3o,) 6.4, 5.5 

Residuals R, R ,̂" (based on F), % 3.8, 3.3; 3.1, 4.0 

Goodness of fit 2.22, 1.85 

Secondary ext. coeff. 3.0(9) X 10 ', 3.5(2) X 10-^ 

" Guinier data, Cu Ka,, 23 °C, with 11, 15, 18, 17 indexed lines for Mn, Fe, Co, and Ni, 

respectively. 

" R = S||FJ-|F,1|/S|FJ; /?„ = [2vv<|FJ-|FJ)-/2vv(FJ-]' % w = \/a\ 
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Table S2. U,, (A*) values for Sc^MTei, for Fe and Ni, respectively. 

Atom U l l  U22 U33 

Scl 0.0078(5) 0.0077(7) 0.0137(7) 

0.009( 1) 0.009(1) 0.013(1) 

Sc2 0.0103(6) 0.0095(7) 0.0103(6) 

U.UU9( 1) O.UU9( 1) 0.008( 1) 

F e , N i  0.0193(7) U l l  0.0087(7) 

0.020( 1) 0.008( 1) 

Te 0.0075(3) U l l  0.0086(3) 

0.0081(5) 0.0067(6) 



www.manaraa.com

185 

Table S3. Interatomic Distances ( < 4.oA) for Sc^MTe,. 

Atom I Atom 2 Distance(A) Atom 1 Atom 2 # Distance 

ScjFeTcz 

Te Te 2x 3.8368(2) Sc2 Te 4x 3.0547(6) 

Scl 3x 3.000(1) Scl 4x 3.234(1) 

Sc2 6x 3.0547(6) Scl 2x 3.460(2) 

Sc2 2x 3.8368(2) 

Scl Tc 2x 3.000(1) Fc 2.982(2) 

Scl 2x 3.151(3) 

Scl 2x 3.8368(2) Fe Scl 6x 2.644(1) 

Sc2 4x 3.234(1) Sc2 3x 2.982(2) 

Sc2 2x 3.460(2) Fe 2x 3.8368(2) 

Fe 2x 2.644(1) 

SCjNITc, 

Tc Tc 2x 3.7656(3) Sc2 Te 4x 3.0340(8) 

Scl 3x 3.004(2) Scl 4x 3.248(2) 

Sc2 6x 3.0340(8) Scl 2x 3.411(3) 

Sc2 2x 3.7656(3) 

Scl Te 2x 3.004(2) Ni 3.032(3) 

Scl 2x 3.201(5) 

Scl 2x 3.7656(3) Ni Scl 6x 2.638(2) 

Sc2 4x 3.248(2) Sc2 3x 3.032(2) 

Sc2 2x 3.411(3) Ni 2x 3.7656(3) 

Ni 2x 2.638(2) 
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Figure I. Near-[001 ] view of the Sc^MTej (M = Mn, Fe, Co, or Ni, gray atoms) structure. Sc—Sc distances are 
mark(^ in A for M = Ni, and dashed lines highlight trigonal prism around tellurium, black atoms. The 
symmetries at M and Te are -62m and -6. 
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A side view of the isolated SC(,M metal chain (Figure 1). Sc-M and repeat distances marked 
in A for M = Ni. The darkened Sc-M bonds denote the Scl trigonal prismatic environment 
around M, which is tricapped by Sc2. 
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FigHre 3. The densities-of-states from the EHTB band calculations for Sc^MTe^ (M = Fe, Ni). The separate M 
(larger dashed lines) and Sc contributions arc projected out. 
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CHAPTER 8. SUBSTITUTIONAL CHEMISTRY IN MnsSij-TYPE 
SCANDIUM COMPOUNDS AND THE FORMATION OF QUASI-

BINARY PHASES 

A paper prepared for submission to Materials Chemistry 

Paul A. Maggard, Douglas A. Knight and John D. Corbett 

Department of Chemistry, Iowa State University, Ames, lA 50011 

Abstract 

The compounds Sc5B,.,B', (B = A1 or Ga; B' = Sn. Sb or Te) were prepared by high-

temperature solid-state techniques, and their structures were determined from powder or 

single crystal X-ray diffraction as hexagonal Mn^Sij type, P6/mcm (No. 193), Z = 2. A given 

atom, A1 or Ga (B), shows mixed occupancy with Sn, Sb, or Te (B') over different phase 

widths. For systems annealed at 1100 - 1575 "C, Single crystal x-ray data indicate that the 

phase widths of Sc,Bj.^B', e.xtend over the ranges .v = 1.38(6) - 2.25(2), 0.83( 1) - 0.96( 1), 0 -

2.25(6), and 0 - 1.25(3) for (B/B') Al/Sb, Al/Te, Ga/Sb and Ga/Te respectively. Powder x-

ray data on the Sn systems shows phase width ranges of .v = -1.2 - 3.0 and 0.0 - 3.0 for B = 

Al and Ga respectively. No interstitial efTects were evident. Lattice constant trends follow 

Vegard's law, with natural increases of a (h) and F with increasing .r, but with irregular 

behaviors of c. Physical property measurements show many of the compounds display 

metallic characteristics, with positive temperature-dependent resistivities and Pauli-like 
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paramagnetic signals. These series of mixed compounds illustrate the effect of substitution 

of a larger B atom in the flexible Mn5Si3 type structure. 

Introduction 

The long and well-known history of the chemical flexibility of MnjSij-lypc phases 

and their interstitial derivatives has been described previously in reviews.' - Pearson's 

handbook^ lists 290 combinations of elements known to crystallize in the Mn5Si^(A5B j) type 

structure through 1991. The A elements include groups 2 to 5, i.e. the early transition- or 

alkaline-earth metals, and the B elements include groups 13 to IS, i.e. main-group elements. 

Chemical alterations within this structure type allow the tuning of electron counts, lattice 

sizes, orbital characteristics, and physical properties within the single structure type. For 

chemists, this flexibility has served as a continual chcck of some of the most basic chemical 

ideas of bonding and properties, as well as an unrecognized source of significant 

experimental errors from impurities. Possible modifications of A^Bj include the addition of a 

third interstitial element Z, which can range up to 20(!) different examples within the 

confacial trigonal anliprisms formed by A, as in ZuSb^Z,* ZrjSnjZ,' ZrjPbjZ.'* La^PbjZ,' 

LajGejZ/ LajSnjZ,'' AejPn, (Ae = alkaline-earth metal; Pn = pnictogen),'"" and RjPmBr 

= rare-earth metal)'* systems. Some of these phases require the presence of interstitial Z for 

stabilization in the Mn^Sis structure type, i.e. Zr;Sb3Z and LasSnjZ, and have historically 

been termed "Nowotny" phases. There are a few examples in which the B atom can also 

serve as the interstitial (self-stuffed Mn5Si3 or TisGa^"), as in A5B3(B) for ZrsSbs 
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ZrjSnj,'"* ZrjPbj,'* and Zr^AU" which may or may not span the entire composition range from 

5:3 to 5:4. More complexities arise when these interstitial sites are filled by both Z and B 

atoms, as in Zr5Sb3 3Feo v"' Compounds are known with mixed occupancies on A positions, 

but no A elements are reported to disorder on the B or the interstitial sites. 

There are a tew reported explorations into the equilibrium chemistry of disorder on 

the B-site in these phases from different chemical groups, i.e., excluding mixed Ge-Si 

occupancy.'' ' ' Boiler and Parthe'" in 1963 were interested in the formation of 

"pseudosilicides" by suitable B-site substitution in Zr5(Al, Ga, or In)j.,Sb^, Ti5Ga3.,Sb„ and 

Hf5lnj.,Sb, systems at .v = 1.5, which they thought might provide increased oxidation 

resistance and stability. More recently, Waterstrat, Kuentzler, and Milller^' were interested in 

optimizing the T^. values for superconductivity with B-site substitutions in Zr5lr,.,T, (T = Pt 

or Os). 

Our own explorations into mixed B-site chemistry of Mn,Sij phases started 

serendipitously with the identification ofSc^Alj.^Te, (x - 0.8 - l.O) in this structure type. 

This contrasted with the fact that neither binary end-member, ScjAlj or ScsTej, was known or 

could be synthesized by us, implying some unusual electronic or size effects in the mixed 

system. In order to gain further views and insights about diverse changes in chemical and 

structural features, this chemistry has been explored for six systems, Sc5(Al or Ga)}.,(Sn, Sb, 

or Te),. The binary 5:3 phases are known among these only for scandium with gallium or 

tin.^ Syntheses, phase widths, structural features, and resistivity and magnetic susceptibility 
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properties are reported and discussed for these series. We will designate B as the trie! 

element and B' as the Sn, Sb or Te that is substituted on these positions. 

Experimental Section 

Syntlieses. All materials were handled in a He-filled glovebox. The elements were 

used as received (Sc turnings 99.7%, Aldrich-APL; A1 rods 99.999%, United Mineral and 

Chemical; Ga chunks 99.99%, Johnson-Matthcy; Sn chunks 99.999%, Johnson-Matthey; Sb 

powder 99.999%, Alfa-AESAR; Te powder 99.99%, Alfa-AESAR). Synthesis of Sc^Al,. 

,Te^ and Sc5Ga3.^Te^ began with the preparation of Sc2Te3 as described previously." All 

other elements were used directly. Appropriate amounts of these compounds and the 

elements were weighed out to give - 300 - 350 mg total for the ScjBj.^B', (B = A1 or Ga; B' 

= Sn, Sb or Te) compositions. The reactants were pelletized into 10mm diameter disks with 

a hydraulic press inside a glovebox and then arc-melted for 20-seconds per side with a 

current of 70 amps. Weight losses from the arc-melted pellets varied with the system and 

composition: ScjAlj.^Te, (1 - 2 wt.%), Sc5Al}.,Sb^ (2 -4 wt.%), Sc5Al3.,Sn, (2-5 wt.%), 

ScjGaj./fe^ (1-3 wt.%), ScsGaj.^Sb^ (3-6 wt.%), ScjGaj.^Sn, (2-6 wt.%). These weight 

losses were typically insignificant relative to the overall compositions, except when small 

amounts of one component were present, i.e. ScsGa, jjTeo ̂ s. These reactions were repeated 

multiple times with and without an excess of the supposedly volatilized component, and the 

phases formed and their lattice constants were found to be typically unaffected. Guinier X-

ray powder patterns were usually not taken at this point, as the powder pattern lines were 
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occasionally somewhat broadened after arc-melting. The arc-melted pellets were welded 

inside tubular tantalum containers and annealed at 1100 - 1575 "C from 1 - 5 days in a high 

temperature vacuum furnace. The reactions annealed at 1525 - 1575 "C for the systems 

ScjAlj^Sb^ and ScsGa,.^Sb, and 1100 - 1200 "C for ScjAlj.^Te, and ScjGaj.^Te^ gave single 

crystals. Guinier patterns at this point were usually very sharp and indicated either the 

synthesis of >95% ScjBj.^B' „ or a biphasic product of the target phase and additional Sc^B 

or Sc^B' components, which indicated the respective phase width limits for the B and B' 

components had been surpassed. 

Powder X-ray Diffraction. The powder diffraction patterns of the Sc5B3.^B', phases 

were obtained with the aid of Enraf-Nonius Guinier powder cameras and monochromatic Cu 

Ka, radiation. The samples were ground, mi.xed with standard silicon (NIST), and placed 

between two strips of cellophane tape on a metal frame that mounted on the sample rotation 

motor. Lattice parameters were obtained with the aid of least-squares refinement of 15 - 30 

lines per sample with 26 values calibrated by a non-linear fit to the positions of the standard 

silicon lines (Table 1). The samples studied fell within the phase width limits and beyond to 

aid in the determination of their end points by lattice dimensions and product yields. 

Single Crystal Diffraction. Several well-faceted crystals were selected from the six 

reactions with B = Al or Ga and B' = Sb or Te that produced samples containing excess 

aluminum, antimony or tellurium, as judged by the presence of Sc^Al, ScsSb, (Yb5Bi3 type), 

or ScTe in the powder patterns, respectively. These enabled the determination of the 

approximate phase boundaries of each system. Crystal qualities were checked with Laue or 
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rotation photographs, and the best crystal mounted in each system was taken for data 

collection on a Rigaku AFC6R diffractometer (monochromated Mo Ka, radiation) at room 

temperature. Twenty-five centered reflections gathered from a random search were used to 

determine provisional lattice constants and the crystal system. Four octants of data were 

collected (h, ±k, ±1), in each case to 20^, = 60" or 58", and these were corrected for Lorentz 

and polarization effects. The data were further corrected for absorption with the aid of 2 - 3 

il» scans. Approximately 2,100 reflections were measured for each crystal from which 700 -

1,400 reflections had I > 3o and 118 - 172 were unique. Extinction conditions in all cases 

suggested the space groups 185 {P6jcni), 188 (P-6c2) or 193 (P6j/mcm). In all cases, the 

centricity statistics were ambiguous, but the structures were solvable only in space group 

193. For every data set, trial models were obtained by direct methods (SHELXS*^) and 

refined with the package TEXSAN.*^ 

The refinement of the B-site with only Al, Ga, Sn, Sb, or Te for the mixed samples 

resulted in extremely large or small thermal parameters, depending on the situation, and led 

to the mixed-site refinements of Al or Ga with Sn, Sb or Te on the same site (assuming full 

occupancy). This result was buttressed by EDS and synthetic results, vide infra. 

Refinements of other combinations of mixed site occupancy on A, vacancies on unmixed B, 

or interstitial site occupation were unsuccessful. After isotropic refinement, the antimony-

richest crystals were further corrected for absorption with the aid of DIFABS." The data sets 

converged after anisotropic refinement at R(F)/R» < 5% in all cases. The x-ray data 

collection and refinement parameters, atomic positions and site occupancies are given in 
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Tabic 2. Additional data collection, refinement, and anisotropic displacement parameters are 

in the Supporting Information. These as well as the FJF^ listings are available from J.D.C. 

EDS. The elemental compositions of crystals from several difierent systems were 

determined via energy-dispersive X-ray spectroscopy (EDS) on a JEOL system 840A 

scanning electron microscope (SbM) with an iXk> X-ray analyzer system and a Kevex 

Quantum light element detector. A beam of appro,ximately 20kV and 0.3 nA was used to 

gain count rates of about 2500 s '. Data were taken on several crystals from each system to 

further establish the approximate 5:3 atomic ratios of the Sc:(B + B') components. The 

compounds ScjGa,, Sc^Te^, SciAI, ScjSn,, and Sc,Sb, were used as standards in relating peak 

areas to atomic percentages, which gave more accurate composition determinations. 

Properties. Powdered samples of-50 mg of a range of ScjBj.^B', phases were each 

loaded inside a He-filled glovebox into a susceptibility apparatus where -50mg was 

sandwiched between two glass rods inside a 3 mm i.d. fused silica tube. Magnetizations for 

the samples were measured from 6 to 300 K in a field of 3 T with a Quantum Design MPMS 

SQUID magnetometer. The data were corrected for diamagnetism of both the sample holders 

and the atomic cores. Resistivities of powdered, sized samples of -50 mg of each sample 

were diluted with AI2O3 and were measured with a "Q" apparatus between 100 and 300 K.-'' 

Results and Discussion 

Synthetic Results. For each of the six ScsBj.^B', systems (B = Al or Ga; B' = Sn, Sb, 

or Te) a series of reactions over a range of 0 ^ .t ^ 3 was performed. The appearance of 
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SciAl, Sc,Sb3 (Yb5Bi3 type), or ScTe in the powder patterns of the products was an indication 

that the phase-width boundaries had been exceeded in each of the systems. This was also 

used as a rough boundary for the refined X-ray compositions of samples and also of the 

approximate 5:3 atomic ratios of Sc:(B + B'). Typically, the threshold for the observance of a 

minor phase in an X-ray powder pattern is 5 - 10%, and so it must be present in a good 

proportion. Table 3 lists for comparison the EDS and single crystal results for the phase 

width determinations. The onset of Sc,B components for each of the systems was found to 

occur for reactions loaded Sc^AI, 5Teo5, Sc^Al, sSbo,, Sc,Al, .jjSn,, (below the minimum .v) 

and usually for v = 0.25 interv als. All of the gallium systems extend to Sc5Ga, (.t = 0). 

However, Sc5Gaj could not be synthesized in pure form, and powder patterns typically 

contained a few extra lines. The occurrcnce of Sc,B' products (above maximum .v) first 

appeared in reactions loaded as Sc^Al, 75Te| j,, Sc^Alu-jSb,,,, Sc^Ga, jTe, 5, Sc,Gao 75Sb; ,5, 

again for v = 0.25 intervals. The tin systems extend to ScjSn, (.r = 3), meaning ScjGaj.^Sn, is 

homogeneous across the entire system, 0 s .v 3. Comparisons of these boundary extremes 

with the refined X-ray compositions for single crystals isolated from beyond the phase 

boundaries. Table 3, shows that the composition extremes so estimated from powder samples 

do, within error, all correctly excecd the X-ray refinement results at the B and B' limits. EDS 

data were obtained only for 5:3 crystals in samples that exceeded the phase boundaries. The 

EDS results in Table 3 also roughly correspond, within 3a, with the single crystal and 

powder X-ray results of the phase boundary determinations, with no new features of note. 
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A complication arose in the study of product formation in two systems, ScjGaj.^Sb, 

and Sc5Ga3.,Te,. Approximately 10 - 25% of an unidentified phase sporadically appeared in 

the powder patterns throughout their listed homogeneity ranges. These samples were not 

used in any subsequent analyses since either another phase evidently lies outside these 

pscudobinar>- systems or the loaded stoichiometrics were in error. As stated earlier, the 

binary Sc^Gaj does not synthesize in high yield either. 

A better delineation of the trends and phase boundaries may be found when the unit 

cell volumes, da ratios, a axis and c axis parameters in Table 1 are plotted as a function of.v. 

in Figures 1-4. As figure 1 shows, the cell volume remains nearly constant beyond the 

phase boundary limits, which are marked by the vertical lines according to the methods 

discussed above. In all cases, the cell volume increases nearly linearly with increasing 

amounts of Sn, Sb or Te substitution for Al or Ga, as expected from size effects. The slopes 

are also found to increase from Sn to Sb to Te, corresponding to the increasing size 

differences between them and the triel. For the Al-Te and some parts of the Ga-Te system, 

the slope is almost entirely zero. Regarding the triels, the cell volume and c'^^/dr for an 

aluminum system is greater than that for the respective gallium system, and becomes 

increasingly so at higher triel concentrations, i.e. compare Al - (Sb or Sn) with Ga - (Sb or 

Sn) where the data is more complete. The reason behind these trends may again be entirely 

attributed due to size, as gallium is smaller than aluminum, but this may also be assisted by 

the lower energy of the gallium p-orbitals depleting the metal-framework of electrons. 
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The da ratios plotted in Figure 2 reveal more sharply the reapportioning of the lattice 

dimensions brought about by the changing atomic sizes and electron concentrations. 

Increasing da ratios result from relative shortening of the metal bonds along the a axis versus 

the c axis, and vice versa. The da ratios for the Ga-Te and Ga-Sn systems increase for 0.25 

^ X ^ 0.5 and then decrease for higher Te or Sn concentrations. This corresponds to a relative 

shortening of the metal bonds along a versus c at high triel concentrations, and then the 

reverse at low triel concentrations. This latter is the general trend among all 6 systems with 

the exception of Al-Sn, which displays the former tendency. Definite conclusions here are 

problematic, as the gallium systems contained small amounts of composition-altering 

unknowns. 

Changes in the individual a and c axis parameters for increasing substitutions of Sn, 

Sb, and Te for A1 and Ga are shown in Figures 3 and 4, respectively. A comparison of these 

figures for the Ga-Sn sytem (excluding the problematic ScsGa,) reveals that  the changes in a 

lattice parameters are more than 3x greater than the changes in c lattice parameters. This 

pattem will be related to structural features described later. The a axis parameters increase 

for all 6 systems, and more so for the gallium systems versus the aluminum systems. The 

reason behind this trend is again most likely due to the size differences. The c axis 

parameters follow unidentified patterns, and for the gallium systems, contain many 

suspicious data points. 

ScsAlj jSn, was the only system in which the Al-richest phase boundary was not 

established by single crystal methods, and the .v = 1.2 end point as determined by lattice 
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constant variations is marked with a solid bar on Figures 1 - 4. This result is not dissimilar 

w i t h  t h a t  f r o m  t h e  u s e  o f  t h e  p r o d u c t  f o r m a t i o n  a s  a  g u i d e  t o  t h e  e n d  p o i n t ,  w h i c h  g a v e  1 . 1 :  

X ^ 1.25. 

Structure. Compounds with this structure type have been described previously and 

frequently.' A near-[001] view of the structure is shown in Figure 5 with the Sc and B/B' 

atoms shaded and open, respectively. The Sc2 atoms form the common triangular faces of 

trigonal antiprisms down the c a.\is. The common basal edges are all bridged by the B/B' 

atoms. The resulting confacial chains of Sc6,:(B)^, units are globally packed into a hexagonal 

configuration. The Scl atoms form a closely spaced string that repeats along the c axis, in 

which each atom resides in a distorted octahedral coordination formed by the B components. 

Figure 6 shows how the Scl atoms fall at the midpoints of the Sc^3(B)fc.: antiprisms along c. 

Selected atomic distances determined by single-crystal data refinements are given in 

Table 4. The atomic distances will be discussed in two parts, considering a) the Sc - Sc and 

b) the Sc - B/B' distances. The size of and matrix effects from B and B' mixed on a single 

site are not completely separable, and it is expected that a stable mixed B element product 

reaches some dimensional compromise with the electronic structure. 

The Sc2 atoms that form the confacial edges of trigonal antiprisms are spaced at 3.37 

- 3.46 A. This distance generally naturally increases for larger B, compare ScjAI, oibSb, 3,4,7, 

and Sc,Alo 74Sb2 2^11)- On the other hand, distances along the Sc2 chain (twice as frequent) 

change much less at 3.56 - 3.58A, as does c. This distance is a fairly long scandium bond 

(see Sc«Te3),** and is drawn as dashed in Figure 5. The Scl separations in the closely spaced 
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linear string repeats at dl and has distances ranging only from 2.97 - 2.98 A, and generally 

changes only slightly with ascending x. The larger Sc2 - Sc2 distance changes on the 

confacial edges of the trigonal antiprisms result in a more significant adjustment of the a axis 

parameters compared to c. 

The shortest metal - non-metal distance is Sc2 - B/B', located on the tnangular edges 

of the antiprismatic chain, from 2.80 - 2.85A (Figure 5), and increases with substitution of Sb 

for Te and with increasing .r (~0.03A). The Scl - B/B' distances, from the non-metals to the 

Scl positions of the string, are slightly longer at 2.92 - 2.97A. Longer distances, for Sc2 -

B/B', are between atoms in adjacent layers (3.23 - 3.26A) or on adjacent metal chains (3.00 -

3.08A). 

Properties. Q-method conductivity results for the samples within their respective 

phase widths are given in Table 5. All of the phases have resistivities on the order of 14 - 50 

^fl cm, and their temperature dependencies range from -0.17(2) to 0.15( I) % K'. Within the 

e.xtended Sc^Ga,.^Sn, series, the resistivity peaks at 46 ^Q-cm at .v = I, and decreases on 

either side to 31 ^Q-cm for ScjGaj and 14 |iQ cm for Sc^Sn,, each with a larger positive 

temperature dependence. Fairly small temperature dependencies arc observed for ScsGa^Sb, 

SbjGa, jSb, 5, SbjGa, ijTeo js, and SbjGaiTe,. The ScsA^.^B'j systems all show positive 

temperature dependencies except Sc^AKTe, which occurs within the small phase width for 

this system. It is difTicult to draw conclusions about correlations of the resistivity with the 

atomic structures and valence electron counts, not just because the latter are difficult to 
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define, but the absolute values of the resistivities are rough estimations to within a factor of 

three (although internal consistency for related samples is probably better)." 

Magnetic susceptibility measurements taken for the SCjB}.^B\ series of compounds 

are listed in Table 6. The magnetic susceptibilities are listed for 6K and 298K to give some 

measure of magnitude of their temperature dependencies. About half of the compounds show 

a temperature independent Pauli-paramagnetic signal of 5 - 8 * lO"* emu-mol '. However, 

there seems to be no relationship between the magnetic results and the resistivity 

characteristics. The substitution of Sn, Sb or Te for Ga in Sc^Ga,7580,5 lowers the room 

temperature paramagnetic susceptibility (Xj^s) with the first and raises it for Sb and Te. For 

the ScjGaj.^tSn or Sb)^ compounds, there is a crossover from temperature independent to 

dependent behavior at x » 1.00 and 1.50 respectively. Magnetic data are plotted for the Ga-

Sn system in Figure 7 to give an idea of the non-linear nature of the temperature 

dependencies, which cannot be fitted to a sum of Pauli-paramagnetic and Curie-Weiss 

contributions. Instead, this situation may be understood as a number of delocalized electrons 

(itinerant) that change with temperature as electrons gain small orbital contributions at 

particular cores,-"' as described for ScxTe,." The Sc5Ga3.,Sn, (1 ^ .r s 3) series shows an 

increase in the magnetic signal from .r = 1.00 to 2.00 and then a decrease in the magnetic 

signal from x = 2.00 to 3.00. The c axis dimension (Table I) also peaks in this series of 

compounds for x = 2.00. The large fiexibility of the ScjBj^B', series of compounds shows a 

range of physical properties that could possibly be correlated with substitutions levels or 
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electronic structure. Investigations into more mixed B-site chemistry may lead to better 

predictability and tunability of structure and property changes. 

Conclusions. Compounds of the compositions ScjBj.^B'^ (B = Al or Ga; B' = Sn, Sb, 

or Te) may be synthesized using high-temperature solid-state techniques. A substitutional 

chemistry is revealed for the B-atomic position within the Mn5Sij (AsBj) structure type. The 

phase width boundaries were explored for each system, and the interatomic distances and 

lattice dimensions were discussed in correlation with the substitution of Sn, Sb or Te for Al 

or Ga within these compounds. Cell volumes change as expected with size effects and the 

da ratios show a reapportioning of the metal framework dimensions. Physical property 

measurements indicate metallic behavior for many of these compounds. Investigations into 

more mixed B-site chemistry may lead to better predictability and tunability of structure and 

property changes. 
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Supporting Information Available 

Tables of additional data collection and refinement information and the anisotropic 

displacement parameters for six Sc^Bj.^B', samples are given. 
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Table 1. Lattice Constants (A) and Cell Volumes (A^) for the A5B3 phases in 80583 ,8', (8 = 
A1 or Ga; 8' = Sn, Sb or Te) samples. 

Lattice Parameters 

Composition loaded x a c V da ratio 

Sc5Al,.,Te, 0.5 (©.sa)-* 8.2676(7) 5.9516(8) 352.30(7) 0.720 

0.8 8.2689(9) 5.9524(8) 352.45(9) 0.720 

LO 8.274(1) 5.947(2) 352.6(1) 0.719 

1.25 (0.960) 8.2735(8) 5.9464(9) 352.50(9) 0.719 

Sc5Al5.,Sb, 0.5(1.384) 8.2722 (7) 5.9668(8) 353.59(8) 0.721 

1.0 8.2742(4) 5.9643(6) 353.61(5) 0.721 

1.5 8.2856(6) 5.9704(7) 354.96(7) 0.721 

2 8.3156(2) 5.9591(3) 356.86(2) 0.717 

2.15 8.3326(2) 5.9541(3) 358.02(3) 0.715 

2.25 (2.26) 8.3350(4) 5.9516(4) 358.08(4) 0.714 

2.75 8.3318(6) 5.9508(5) 357.76(6) 0.714 

Sc5Alj.,Sn, 0.5 8.316(2) 6.001(3) 359.4(2) 0.722 

1.0 8.320(1) 6.006(1) 360.1(1) 0.722 

1.25 8.3218(4) 6.0010(9) 359.91(6) 0.721 

1.5 8.331(1) 6.018(2) 361.7(1) 0.722 

2 8.344(2) 6.043(2) 364.3(2) 0.724 

2.5 8.3818(4) 6.0590(4) 368.64(4) 0.723 

2.75 8.3830(4) 6.0599(5) 368.80(5) 0.723 

3.0 8.3956(2) 6.0622(3) 370.05(5) 0.722 

Sc5Ga3.,Te, 0.0 8.086(2) 5.949(4) 336.8(3) 0.736 

0.25 8.0772(2) 6.0387(4) 341.20(3) 0.748 

0.5 8.0889(6) 6.0431(8) 342.43(7) 0.747 
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Table 1. (continued) 

Sc,Ga,.,Sb^ 

Sc5Ga}.,Sn, 

1.0 8.1201(3) 5.9765(4) 341.27(3) 0.736 

1.5 8.148(2) 5.976(1) 343.6(2) 0.733 

1.75 (1.25) 8.1478(8) 5.967(1) 343.0(1) 0.732 

0.0 8.086(2) 5.949(4) 336.8(3) 0.736 

0.25 8.100(2) 5.954(2) 338.3(2) 0.735 

1.0 8.1403(4) 5.9969(4) 344.14(4) 0.737 

1.5 8.1960(8) 5.9840(9) 348.12(8) 0.730 

1.8 8.2440(3) 5.9698(3) 351.37(3) 0.724 

2.25 8.277(1) 5.960(1) 353.6(1) 0.720 

2.35 (2.24) 8.2771(6) 5.9618(8) 353.72(7) 0.720 

0.0 8.086(2) 5.949(4) 336.8(3) 0.736 

0.25 8.0923(3) 6.1035(4) 346.14(3) 0.754 

1.0 8.172(4) 6.053(4) 350.1(4) 0.741 

1.5 8.220(2) 6.064(2) 354.9(2) 0.738 

2.0 8.297(2) 6.079(2) 362.5(2) 0.733 

2.75 8.3975(4) 6.0696(6) 370.67(5) 0.723 

3.0 8.3956(2) 6.0622(3) 370.05(5) 0.722 

" The numbers in parentheses indicate the compositions determined by structural refinements 

(below) of crystals from the mixed-phase products. 
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Table 2. Summary of Single Crystal X-ray Data Collection, Refinement and Positional Parameters for Six ScjBj .B', Limits. 

B-B' AI-TC 

(x ~ 0.83) 

Al-Te" 

(x ~ 0.96) 

Al-Sb^ 

(x ~ 1.38) 

Al-Sb-' 

(x ~ 2.26) 

Ga-Te' 

(x-^ 1.25) 

Ga-Sb^ 

(x ~ 2.24) 

formula weight 389.3 402.3 436.9 520.0 506.3 551.0 

space group, Z P6/mcm (No. 193), 2 

(g/cm') 3.69 3.81 4.10 4.81 4.90 5.17 

H, Mo K, (cm'') 81.64 86.80 98.60 128.66 165.35 157.22 

R, R,,' % 3.2, 4.3 3.1,3.5 1.3, 1.2 3.2, 2.8 2.8, 2.2 4.6, 4.3 

Refined Parameters*' 

Scl,U,„ 0.93(4) 1.06(6) 0.81(2) 0.59(6) 0.86{()) 0.76(8) 

Sc2,.v 0.2354(2) 0.2364(1) 0.23642(2) 0.2397(2) 0.2380(3) 0.2395(2) 

u.«. 1.0(1) 1.01(3) 0.80(4) 0.7(1) 0.8(2) 0.8(1) 

B + B', .t 0.3935(2) 0.3927(1) 0.39410(5) 0.3912(1) 0.3940(1) 0.39205(8) 

u.„ 1.04(6) 1.05(3) 0.80(2) 0.59(4) 0.79(6) 0.68(4) 

B' atom, % 27.67(3) 32.000(3) 46.133(2) 75.200(7) 41.67(1) 74.80(2) 

" SC}Al2 i7Teog3(i), ̂  Sc5Ai2i>4oTeo9^„), SC5AI16ib^bj SC5Alfl 7486^ 26,J,,' ScjGai 75Tei ^5,4,,' ScsCJao 7^862 24,7) 

' R = E||f J - |FJ|/2|FJ; /?. = [Em<|/=-„| - »»• = o,- ^ 

* The atomic types are Scl (0^v,l/4), Sc2 (2/3,1/3,0), B/B' (jr,0,3/4). 

' The respective lattice constants may be found in Table I. 
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Table 3. Comparison of the EDS and Single Crystal X-ray results for the ScsBj.^B' ^ System 
Phase Limits." 

Compound EDS Data Single Crystal Data 

(Excess ScB or ScB') 

Maximal x (B' richest) 

ScjAlj. Je, Sc5o<i)Aii <)(i)Tei 1,1) SC5AI1 oaoTCo 95o,x, 

SC5AI3. ,Sb, SC5 (X1 )Alo 1 jSbi J, 1, SC5AI0 74Sbi 

ScjGa, Je, SC4 'j( 1 )Gaj 4< 1 ,Tco 7( 1) Sc5Ga| 75Te) 

Sc5Ga} .,Sb, Sc? o( 1 iGa^K, 1 )Sbi 1,1, SC;Ga<) TfcSb; 14,7, 

Minimal x (B richest) 

SC5AI3. Je, :(i|Teo8(i( Sc5Al2i7Teo 1(3(1) 

ScjAlj. ,Sb, ScjAli biftSbi 3^7) 

SC5AI,. ,Sn, SC5:(1)A1| i,i)Sni ^,1,* 

" Phase widths in gallium and tin systems extend to ScjGa, and Sc^Sn,. 

" For on a polycrystalline sample with excess ScjAI. 
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Table 4. Selected Distances in Sc5B3.,B\ Compounds from Single Crystal X-ray Data. 

ScjAlj^B , Phases Sc5Ga3.,B Phases 

Site Site x Te" Te" Sb' Sb'' Te' Sb^ 

1 2 (x~0.83) (x~0.96) (x-~1.38) (x~-2.26) (x~1.25) (x~2.24) 

Scl Scl 2x 2.9758(4) 2.9732(4) 2.9834(4) 2.9758(2) 2.9835(5) 2.9809(4) 

B 6x 2.9470(4) 2.9500(2) 2.9484(2) 2.9707(3) 2.9161(4) 2.9545(3) 

Sc2 Sc2« 2x 3.371(2) 3.387(2) 3.387(1) 3.460(3) 3.359(4) 3.433(3) 

Sc2* 4x 3.556(1) 3.559(1) 3.5672(5) 3.584(1) 3.558(1) 3.580(1) 

B 2x 2.835(1) 2.8328(6) 2.8417(4) 2.8477(7) 2.800(1) 2.8332(6) 

B 3.068(2) 3.069(1) 3.0560(9) 3.077(2) 2.998(3) 3.050(2) 

B 2x 3.2501(8) 3.2422(6) 3.2560(5) 3.2327(8) 3.243(1) 3.2375(9) 

B B 2x 3.458(1) 3.4634(8) 3.4597(6) 3.4848(9) 3.448(1) 3.4755(8) 

Scl 4x 2.9470(4) 2.9500(2) 2.9484(2) 2.9707(3) 2.9161(4) 2.9545(3) 

Sc2 2x 2.835(1) 2.8328(6) 2.8417(4) 2.8477(7) 2.800(1) 2.8332(6) 

Sc2 3.068(2) 3.069(1) 3.0560(9) 3.077(2) 2.998(3) 3.050(2) 

Sc2 2x 3.2501(8) 3.2422(6) 3.2560(5) 3.2327(8) 3.243(1) 3.2375(9) 

' ScjAU pTco 113(1), * Sc5Al2 04oTeo9<,o(it),' SC5AI1 ^iftSbi '' SCJAIQ 74Sb2 

SCsGaj 75^6) 25(4)» ^ SC5Gao.76Sb2 24(7) 

' Intratriangle/intraplane distance. 

'' Intertriangle/interplane distance. 
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Table 5. Room Temperature Resistivities (^Q•cm) and Temperature Dependencies 
((<3p/(3T)/p, %/K) for the ScjBj.^B', Systems. 

B = Ga Al Ga A1 Ga A1 

B' = Sn Sb Sb Te Te 

x = 0.0 30. 30, 30, 

0.134(7) 0.134(7) 

0.25 41, 28. 36, 

0.063(2) -0.05(1) 

1.00 46, 22, 24, 21. 

0.028(7) 0.014(6) 

1.50 39, 21. 34, 22, 

30. 

0.134(7) 

41. 

-0.17(2) 

46, 

0.04(1) 

39, 21. 

0.15(1) 0.112(3) 

24. 19. 

0.069(4) 0.138(2) 

22, 15. 

0.075(3) 0.108(2) 

14. 14, 

0.069(3) 0.069(3) 

2.00 24. 19. 17. 

0.086(2) 

2.75 

3.00 



www.manaraa.com

213 

Table 6. Magnetic Susceptibilities (emu-mol ' * 10') and Temperature Dependencies for the 
ScjBj.jB'^ Systems (1" line for 6K, 2"^ line for 298K). 

B = Ga Al Ga Al Ga Al 
B' = Sn Sn Sb Sb Te Te 

X
 II o
 

d
 

0.630 0.630 0.630 

0.632 0.632 0.632 

0.25 0.485 0.835 2.59 

0.448 0.821 0.710 

1.00 2.59 0.484 0.865 0.774 

0.852 0.488 0.667 0.597 

1.50 2.53 2.08 2.11 2.35 

0.803 0.650 0.591 0.684 

2.00 4.25 0.643 0.559 

2.37 0.623 0.553 

2.75 3.34 0.681 

1.52 "0.560 

3.00 3.60 3.60 

1.12 1.12 

" Compound undergoes a sharp transition between 46 - 56K from 6.7* IO"' emu-mol ' 

to S-TxlO"* emu-mol' between two temperature independent paramagnetic signals. 
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Figare I. Cell volume (A^) versus jc for Sc,B}.,B',. Shaded and open symbols represent Al andGa systems, respectively. 
Vertical dashed lines indicate single-crystal composition endpoints and the solid line for Al-Sn shows the end 
point determined from powder pattern date. 
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Figare 2. c/a ratio versus x for SC}B3„B\. Shaded and open symbols represent Al and Ga systems, respectively. 
Vertical line indications are identical to Figure I. 
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FigHrc 3. a axis versus x for Shaded and open symbols represent Al and Ga systems, respectively. 
Vertical line indications are identical to Figure I. 
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Figure 4. c axis versus x for ScjBj .B',. Shaded and open symbols represent Al and Ga systems, respectively. 
Vertical line indications are identical to Figure 1. 
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Figarc 5. The unit cell of Sc5B,.,B\ (B = Al or Ga; B' = Sn, Sb or Te) viewed down [001], 



www.manaraa.com

Figure 6. A view of Sc5B}.,B\ (MnsSis-type) along (110). 
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FigHrc 7. Magnetic susceptibility (( x )  versus Temperature ( K )  for the ScjGaj ,Sn, ( 1  \ <, 3) 
Series of Compounds 



www.manaraa.com

221 

CHAPTER 9. CONCLUSIONS 

The chemistry of metal-rich compounds has evolved predominantly in one of two 

areas, the early transition metals (Sc, Y, Zr, Nb...) in combination with halides (I, Br, CI) or 

the electron-richer transition metals (Ti, Nb, Zr...) in combination with chalcogenides (S, Se, 

Te). Compounds in the former category nearly always contain transition-metal chains or 

clusters, while those in the later usually comprise transition-metal layers or 3D-networks. 

These two solid state chemistry areas, the halides and chalcogenides, have usually been 

regarded as unrelated or at least treated separately in the literature, implying the absence of 

structural interrelationships or similar bonding principles. Furthermore, most of the earliest 

transition metals (Sc, Y, La) in combination with a halide require a main group or late-

transition metal interstitial (C, O, N; Fe, Co, Ni) to stabilize the metal-metal bonding. From 

this, it might have been incorrectly concluded that the chalcogenides of the earliest transition-

metals, compounds even electron poorer than the halides, could not exist, at least as binaries. 

The work reported in this thesis has shown that metal-rich compounds containing the 

earliest transition metals, scandium and yttrium, in combination with a particular 

chalcogenide, tellurium, exist, and that they share many structural and bonding features 

relating to both electron-richer transition metal chalcogenides and halides. ScjTe was found 

to have double edge-sharing octahedral chains, similar to that found in Sc7CI)o,' that could be 

also looked upon as a dissociation product of electron-richer frameworks. Then two of these 

double octahedral chains were found condensed together in a so-called Z-type unit in the 2D 

ScgTe3 structure, which revealed more direct relationships to the electron-richer and more 3D 
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metal-bonded Tii,(S,Se)3^"' compounds. Cooperative matrix effects and bonding effects, or 

the interplay of anion size, valence electron concentration, and stoichiometry were found to 

influence metal-framework dimensionality. The metal-richest compound reported here, 

ScyTe,, shows a rare example of what is the widely predicted normal predisposition for low-

dimensionally bonded structures, i.e. a metal-lattice modulation arising from the 

differentiation of internal and external metal-metal bond orders. Similar metal displacements 

in YsTej have not been identified with an ordered arrangement. 

Beyond this binary chemistry are the interesting ternary compounds containing 

manganese, iron, cobalt, nickel or aluminum (and even some hydrogen). One need but 

scratch the surface of ternary systems and come up with a handful of new compounds. These 

third elements stabilized two new metal-bonded isomers, Sc^NiiTei and Y5(Fe,Co,Ni)2Te2, 

with a ID ScjNii double chain and 2D Y5Ni; layer, respectively. They both may be derived 

from the condensation of ID metal-units in GdjMnl,,^ while the scandium example is also 

isostructural to the 3D metal-bonded structure of HfjCoi.^Pj.,.- Only the YsNiiTe^ example 

was (accidentally) found to take up hydrogen, which showed the way to a new compound 

containing buckled Y-Ni layers. The Sc^Bj.^B', (B = Al or Ga; B" = Sn, Sb or Te) phases 

passed beyond imagination at the time. Despite the fact that neither Sc,Al) or Sc5Te3 was 

known, trial substitutions of aluminum for scandium in the metal-rich phases found SC5AI3. 

,Te, with a narrow composition range. Slipping through this small crack, a new mixed B-site 

substitution chemistry was found for the MnsSij structure type, in an area that currently 

defies boundaries and chemical sensibility. All the examples above show that what is 
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possible chemically is sometimes beyond prediction or imagination, and the only way to fmd 

to new chemistry is to make it. 

Attempted reactions, unresolved problems, and future work. In the search for 

new metal-metal bonding motifs in this emerging area, a few additional systems were tested 

for unknown or isostructural metal-nch phases. A few metal-nch compositions in the Sc-Se 

and La-S binary systems were reacted by arc-melting but produced only simple binaries and 

metal. Also, the Y-Te system was explored through arc-melting reactions, producing only 

YgTej, but more phases may be possible here via reactions at lower temperatures. The (Sc or 

Y)-C-Te systems were tested through arc-melting, producing a few unidentified phases but 

no large single crystals for X-ray di(Traction. Lastly, preliminary lattice constant evidence 

suggests that aluminum substitution for tellurium in SciTe, SC^TC} and ScqTej is possible to a 

large extent. 

Two unresolved problems included in the appendices are the disordered crystal 

structure solution for YhTcj, and a few new ScTe polytypes for which ED may be more 

appropriate for full characterization. Beyond these unresolved problems however, new 

synthetic chemistry is very wide open among the earliest transition-metal chalcogenide 

systems. Even now, research colleagues have shown that similar metal-rich chemistry is 

possible for probably most of the lanthanides as well.*^ The best and easiest immediate 

prospects would probably include a) the completely unexplored R-M-Te ® = Rare earth; M = 

late-transition metal) ternary realms, which is most assuredly full of undiscovered treasures, 

b) new metal-rich compounds through the substitution of Al or Ga for Te (or vice versa), c) 
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hydrogen absorption studies in the ternary compounds with late transition metals, d) 

extension of similar binary chemistry to the rare-earth metal selenides or calcium 

chalcogenides (much more difficult tasks), and e) mixed early-transition-metal quasi-

binaries. A fuller and detailed map of the new chemistry possible is like charting the ocean 

from shorelines, new chemistry waits to be uncovered for anyone who cares to cast in their 

line or to dive deep. 
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APPENDIX A. THE X-RAY STRUCTURE SOLUTION OF YJCj 

A paper prepared for submission to Inorganic Chemistry 

Paul A. Maggard and John D. Corbett 

Department of Chemistry, Iowa Stale University, Ames, IA 50011 

Abstract 

YkTC] was synthesized by high-temperature solid-state techniques and characterized 

at 23 "C by single crystal X-ray diffraction to be monoclinic C2/m (No. 12, Z = 4) with a = 

31.173(5) Kh = 4.0697(6) A, c = 24.394(4) A, andp=\22.749(3)". YsTc, is nominally 

isotypic with Sc^Te), consisting of corrugated sheets of early-transition metal comprising a 

complex network of trans-edge-sharing metal octahedral and square pyramidal chains 

separated by wcll-spaced tellurium neighbors. Within one yttrium chain, three metal 

positions show exaggerated thermal displacement parameters. No superstructure or lower-

symmetry solution could be found, which prompted an additional data set collection at -100 

"C with a = 31.131(5) Kb = 4.0689(7) A, c = 24.351(4) A, and P= 122.728(3)". The X-ray 

structure solutions suggest disorder inside one of the yttrium cluster chains, similar to that for 

ScqTe., which is known to have similar distended ellipsoids (in the subcell) arising from a 

metal-lattice modulation. 
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Introduction 

As has been known and described for scandium-rich compounds of the tellurides,' "^ 

are unique differences compared to their later-transition metal progenitors. Reduction in 

dimensionality, greater matrix effects, and new metal clusters and chains represent a few 

changing features of this chemistry found in the binary and ternary scandium tellundes. A 

recent discovery for these low-dimensional metallic compounds, revealed in Sc.,Te;,^ has 

been symmetry-lowering via metal-lattice modulations and a more prominent delineation of 

internal and external metal overlap populations, as compared to undistorted models in the 

Ti,Sei type. The detection of this supercell and ordered solution was elicited by apparent 

extreme displacement parameters in Sc9Te2. YsTe, parallels ScqTe, among these metal-rich 

compounds, showing extreme displacement parameters on similar internal metal positions. 

The synthesis and property measurements for YgTes have been reported,* but with no fine 

structural details. The results of two x-ray single crystal refmements and the search for an 

ordered solution of Y^Tcs is discussed and juxtaposed with ScqTci. 

Experimental 

Synthesis. Synthesis of Y^Tcj began with the preparation of YjTe, (NaCI-type with 

disordered cation vacancies) from reaction of the elements (Y sheet, 99.8%, Alfa; Te powder, 

99.99%, Aldrich) inside fused-silica tubing. Arc-melting and annealing a pressed-peilet 

containing Y and Y2Te3, with the composition YgTe3, resulted in ^95% yield of product 

according to X-ray powder diffraction. The arc-melted button was annealed inside tantalum 
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and fused-silica containers at 1150°C for 3 - 4 days, and single crystals obtained therefrom. 

Higher annealing temperatures or longer reaction times resulted in complete decomposition 

of the product. 

Single-Crystal DifTraction. Several black and irregularly shaped crystals were 

obtained from reactions loaded ¥*163. Crystal qualities were checked with Laue 

photographs, and the best crystal was taken for a data set collection on a Bruker CCD 

diffractometer operating at room temperature with Mo Ka, radiation. A set of ninety 

reflection frames with 30-s exposures were collected and analyzed to determine provisional 

lattice constants and crystal orientation. The inde.xing gave a monoclinic unit cell with a = 

31.173(5) Kh= 4.0697(6) A, c = 24.394(4) and P = 122.749(3)". One full sphere of 

reflections was collected to 20 - 56", using a total of 1,818 CCD frames. After data 

collection, several hundred of the reflection frames were examined visually as well as 

integrated to search for unindexed reflections, but none were found. Integration and filtering 

of the CCD frames was performed by SAINTPLUS.^ Out of 6399 possible reflections, 2292 

were observed (I 2a) and unique. An absorption correction was applied using SADABS.' 

Extinction conditions suggested the possible space groups C2/m, C2, and Cm. Intensity 

distribution statistics favored the centric space group, and the structure was refined in C2/m. 

Single crystal X-ray data collection and refinement parameters are shown in Table I. The 

refinement converged at R\hvR2 = 0.059/0.149 against F* (I ^ 2o). The final positional, 

isotropic and anisotropic thermal parameters are located in Tables 2 and 3. A few 

exaggerated thermal ellipsoids are apparent for Y9, Y13 and Y15. Structure solutions 
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attempted in C2, Cm, P2/m, P2, Pm, P-I, and P I  in the centered and primitive unit cell 

settings did not result in less exaggerated atomic displacement parameters. 

To help determine if the elongated displacement ellipsoids were temperature-

dependent, a second data set was taken on the Bruker CCD difiractometer operating at -

100"C. Data collection and analysis procedures are identical to those given above. Table 1. 

Indexing found a monoclinic unit cell with a = 31.131(5) A, b = 4.0689(7) A, c = 24.351(4) 

and P = 122.728(3)". Several hundred of the CCD frames were examined visually as well as 

integrated to search for extra reflections. A few reflections found indicated a possible 

doubling for h, k, and 1. Integration of all the CCD frames (1,818) found less than 1% of 

these reflections were obser\'ed, indicating either no real superstructure or an extremely weak 

one. The solution was reflned in C2/m, and the fmal positional and thermal parameters are 

given in Tables 2 and 3 (the second line). For this second data collection, the extended 

ellipsoids for Y9, Y13 and Y15 are still apparent with little change in magnitude or direction. 

Again, solutions attempted in C2, Cm, P2/m, P2, Pm, P-l, and PI in the centered and 

primitive unit cell settings did not result in less exaggerated atomic displacement parameters. 

Also, modeling the disorder as split positions for Y9, YI3 and YI5 did not attenuate the 

thermal ellipsoid problems. 

The solutions to the data sets given in tables 2 and 3 are taken as currently the most 

accurate representation of the structure. A complete listing of interatomic distances out to 4.0 

A is given in Table 4 (296K) and Table 5 (173K). 
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Results and Discussion 

Structural Description. YgTej (and also ScgTC]) has the TigS3'' structure type. 

Sc^Tej has been described in some detail, which contained general comments about Y^TC) 

having 0.25-0.40A (10%) longer metal-metal distances and expanded lattice constants, with 

comparable bonding trends and features. These general observations are confirmed by this x-

ray structure solution. 

A near-[010] projection of the Y,Tej structure (99.9% thermal ellipsoids) is shown in 

Figure 1, with the Y-Y bond distance limit set at 3.85 A. All atoms repeat down the short b 

axis, 4.07 A, in projection and the metal atoms are condensed along a into two partially 

separated and corrugated metal sheets. The corrugated metal sheets stack ABAB down c, 

demarcated by tellurium atoms. The two shortest intersheet distances are labeled at 3.75 A 

and 3.79 A for Y3-Y4 and YI0-YI4, but these are known to be typically weak metal-metal 

interactions because of tellurium near neighbors.' 

The two corrugated yttrium sheets are given in Figure 2 (A and B) separately. The 

structural units and metal distances follow the same basic trends as in Sc«Te], and are given a 

briefer description here. The corrugated sheet in Figure 2A shows two main yttrium units, an 

infinite trans-edge-sharing chain of single octahedra (Y5 and Y6) and four infinite trans-

edge-sharing chains of octahedra condensed through the sharing of six edges (Y3, Y9, YI I, 

YI3, and Y15), called the Z unit. The single edge-sharing octahedral chain has the shortest 

distance on the shared edge for Y5-Y5 at 3.43 A and longer apex distances for the nonshared 

edges, Y5-Y6 at 3.53 A and 3.62 A. The vertex-vertex distance, Y6-Y6, is significantly 
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larger at > 4.0 A. Similarly, the Z unit has the shortest distances on the shared edges of 

different octahedral chains, YI5-Y15 at 3.19 A and Y15-Y13 at 3.48 A, and longer distances 

among the external (peripheral) and inside trans-edges of the chains, 3.47-3.81 A. The Z unit 

and the single octahedral chain are connected via a trans-edge-sharing chain of square 

pyramids, Y5-Y14 at 3.63 A and Y9-Y14 at 3.58 A. 

The other, more condensed, corrugated sheet is shown in figure 2B. An analogous Z 

unit can be identified in the middle of the sheet (Yl, Y2, Y7, Y8 and YIO). As before, the 

shortest Y-Y distances occur on the shared edges of difierent octahedral chains, Y8-Y8 at 

3.32 A and Y8-Y10 at 3.41 A, and longer yttrium distances along the periphery, 3.56-3.65 A. 

The Z unit is then condensed on both ends via Y1-Y7 at 3.44 A to strings of three infinite 

trans-edge-sharing octahedral chains sharing vertices. This string of three octahedral chains 

comprises two unique yttrium chains (Yl, Y7, Y12, Y16 and Y4, Y4, Y16, Y16). The 

central octahedral chain exclusively shares vertices with the neighboring octahedra, while the 

two end octahedral chains share a vertice and two edges. While the octahedral chains have 

similar metal distances on the shared edges down the short axis, YI6-YI6 at 3.55 A and 

Y1-Y12 at 3.59 A, they have dissimilar metal-distances on the periphery, Y4-YI6 at 3.45A 

and 3.56A compared to Y1-Y16 at 3.51 A, Y12-Y16 at 3.73 A, and Y7-Y12, 3.82 A. 

Compared to Sc«Te}, YKTe3 has a longer short axis but otherwise structurally similar 

octahedral chains along it. 

Tellurium atoms within the structure are coordinated by a trigonal prism of yttrium, 

capped 1-3 times on their rectangular faces. Compared to Y-Y, the Y-Te distances are 
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narrower in range at 3.1-3.3 A. All Te-Te distances are ^ 4.07A, and Te-Te bonding is not 

evident. 

Fine X-ray Structure Details. The structural description is not complete without 

mention of the problematic thermal displacement parameters for three yttrium positions, Y9, 

Y13 and Y IS. These positions compnse most ot the Z unit highlighted in the unit cell in 

Figure 3A, and shown projected horizontally, with 98% thermal ellipsoids. The intemal Y15 

position has electron density spread vertically, while the Y9 and YI3 positions have electron 

density exaggerated horizontally. This is similar in appearance to the apparent disorder first 

detected in Sc^Tci, shown in Figure 3B, for which an ordered atomic displacement pattern 

was found. The ordered version of Sc^Te, has intemal body-centered cube positions of 

scandium that alternate up and down along the short axis, while the scandium nearest 

neighbors alternated left and right down the short axis (indicated with arrows). A similar 

metal-lattice modulation down the short axis of the yttrium phase is suggested by the thermal 

displacement parameters, but no sign of order has been found. However, the metal features 

of both chains and the packings in their respective structures are difTerent, and it is difficult to 

quantify how these effects would influence a metal-lattice modulation. 

Conclusions. YgTe3 is nominally isotypic with the TiHS3 family of compounds, 

containing a complex network of trans-edge-sharing metal octahedral and square pyramidal 

chains condensed into 2D layers. The X-ray structure solutions suggest that the octahedral 

chains in one Z unit contain a disordered metal-lattice modulation on three intemal yttrium 
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positions. In Sc^Te,, an ordered solution was found, while for YgTej, no ordered solution 

could be. 
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Table I. Single Crystal X-ray Data Collection and Refinement Parameters for YgTcj (296K, 
173K). 

Formula weight, g mol' 1094.08 

Space group, Z C2/m (No. 12), 4 

Lattice parameters and cell volume 

"(A)  31.173(5).31.131(5) 

h { h  4.0697(6), 4.0689(7) 

c(A)  24.394(4), 24.351(4) 

/?(deg.) 122.749(3), 122.728(2) 

y { ^ ' )  2602.8(7), 2594.9(8) 

<»ic (g cm') 2.792, 2.801 

^ (Mo K,)(cm') 20.882, 20.946 

Diffractometer CCD-equipped Bruker AXS 

Octants collected ±h, ±k, ±1 

20-maximum (deg.) 56, 52 

Independent Parameters 134 

Processed Reflections 6399, 9682 

Unique reflections 3330, 2917 

Observed unique reflections (> 2 a )  2292, 2209 

Residuals R \ , w R 2 '  %  0.059, 0.149; 0.069, 0.179 

Extinction coefficient 0.0013(1), 0.00010(5) 

- R\ = L1|F„1 -\F,\\/y\FX, w/f2 = [Vw(F„- - w = 1/(0^-)^ 
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Positional and Isotropic Thermal Parameters for YgTcs (1" line - 296K, 2"^ line -

atom X -

Tel 0.26055(5) 0.22026(7) 0.0080(3) 

0.26057(6) 0.22047(7) 0.0078(4) 

Te2 0.89533(5) 0.81367(7) 0.0073(3) 

0.89539(6) 0.81359(7) 0.0070(4) 

Te3 0.94314(5) 0.67628(7) 0.0080(3) 

0.94301(6) 0.67593(7) 0.0082(4) 

Te4 0.57173(5) 0.69222(7) 0.0078(3) 

0.57188(6) 0.69192(8) 0,0081(4) 

Te5 0.87118(5) 0.46947(8) 0,0148(4) 

0.87109(6) 0.46894(9) 0.0165(4) 

Te6 0.13036(5) 0.02597(6) 0.0070(3) 

0.13035(6) 0.02587(7) 0.0075(4) 

Y1 0.59000(8) 0.9102(1) 0.0083(4) 

0.58995(9) 0.9101(1) 0,0086(5) 

Y2 0.71999(7) 0.1044(1) 0.0078(4) 

0.71997(9) 0.1044(1) 0.0081(5) 

Y3 0.69698(8) 0.2479(1) 0.0101(5) 

0.69683(9) 0.2478(1) 0.0113(5) 

Y4 0.58361(8) 0.0758(1) 0.0097(4) 

0.58364(9) 0.0760(1) 0,0096(5) 

Y5 0.56454(8) 0.5553(1) 0,0091(4) 

0.56461(9) 0.5553(1) 0,0093(5) 

Y6 0.98968(7) 0.5903(1) 0.0083(4) 

0.98983(9) 0.5902(1) 0.0087(5) 

Y7 0.05893(8) 0.7800(1) 0.0082(4) 

0.05909(9) 0.7799(1) 0.0079(5) 
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Table 2. (continued) 

Y8 0.20015(9) 0.9682(1) 0.0192(5) 

0.2002(1) 0.9683(1) 0.0177(6) 

Y9 0.29219(8) 0.3669(1) 0.0158(5) 

0.2918(1) 0.3669(1) 0.0176(6) 

YIO 0.32972(8) 0.1600(1) 0.0127(5) 

0.32990(9) 0.1602(1) 0.0129(6) 

Y l l  0.37051(8) 0.5663(1) 0.0114(5) 

0.37034(9) 0.5657(1) 0.0126(6) 

Y12 0.45677(7) 0.7834(1) 0.0082(4) 

0.45679(9) 0.7834(1) 0.0081(5) 

Y13 0.83391(8) 0.6577(1) 0.0209(6) 

0.8337(1) 0.6575(1) 0.0221(7) 

Y14 0.84987(8) 0.3032(1) 0.0108(5) 

0.84971(9) 0.3035(1) 0.0116(6) 

Y15 0.7611(1) 0.4589(2) 0.053(1) 

0.7611(1) 0.4591(3) 0.066(2) 

Y16 0.01009(8) 0.9350(1) 0.0106(5) 

0.01019(9) 0.9353(1) 0.0110(5) 
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Table 3. Anisotropic Thermal Parameters for YgTej (1" line - 296K, 2"^ line - 173K). 

atom U I P  U22 U33 U13 

Tel 0.0084(6) 0.0066(7) 0.0107(7) 0.0063(5) 

0.0086(8) 0.0056(8) 0.0159(8) 0.0111(7) 

Te2 0.0068(6) 0.0066(7) 0.0094(6) 0.0050(5) 

0.0073(8) 0.0050(8) 0.0144(8) 0.0096(7) 

Tc3 0.0067(6) 0.0092(7) 0.0097(6) 0.0056(5) 

0.0079(8) 0.0082(8) 0.0148(8) 0.0103(7) 

Te4 0.0073(6) 0.0073(7) 0.0098(6) 0.0052(5) 

0.0078(8) 0.0061(8) 0.0154(8) 0.0095(7) 

Te5 0.0074(7) 0.0064(7) 0.0301(9) 0.0097(6) 

0.0098(9) 0.0065(9) 0.0381(1) 0.0163(8) 

Tc6 0.0069(6) 0.0071(7) 0.0083(6) 0.0050(5) 

0.0071(8) 0.0061(8) 0.0153(8) 0.0100(7) 

Y1 0.0089(9) 0.009(1) 0.0092(9) 0.0065(8) 

0.010(1) 0.009(1) 0.013(1) 0.010(1) 

Y2 0.0059(9) 0.007(1) 0.0093(9) 0.0032(7) 

0.008(1) 0.008(1) 0.014(1) 0.009(1) 

Y3 0.0059(9) 0.006(1) 0.017(1) 0.0057(8) 

0.008(1) 0.008(1) 0.022(1) 0.011(1) 

Y4 0.015(1) 0.007(1) 0.012(1) 0.0095(8) 

0.013(1) 0.008(1) 0.016(1) 0.014(1) 

Y5 0.0078(9) 0.013(1) 0.0086(9) 0.0056(7) 

0.008(1) 0.013(1) 0.015(1) 0.011(1) 

Y6 0.0065(9) 0.009(1) 0.009(1) 0.0042(8) 

0.009(1) 0.006(1) 0.0018(1) 0.012(1) 

Y7 0.0092(9) 0.009(1) 0.0084(9) 0.0062(8) 

0.009(1) 0.007(1) 0.015(1) 0.011(1) 
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Table 3. (continued) 

Y8 0.024(1) 0.019(1) 0.027(1) 0.022(1) 

0.021(1) 0.016(1) 0.032(2) 0.025(1) 

Y9 0.0058(9) 0.034(2) 0.008(1) 0.0042(8) 

0.007(1) 0.038(2) 0.012(1) 0.008( 1) 

Y I O  0.008(1) 0.018(1) 0.013(1) 0.0066(8) 

0.009(1) 0.017(1) 0.019(1) 0.012(1) 

Y l l  0.011(1) 0.010(1) 0.016(1) 0.0088(8) 

0.012(1) 0.008(1) 0.026(1) 0.016(1) 

Y12 0.0078(9) 0.008(1) 0.011(1) 0.0060(8) 

0.007(1) 0.007(1) 0.017(1) 0.010(1) 

Y13 0.008(1) 0.047(2) 0.010(1) 0.0062(8) 

0.006(1) 0.049(2) 0.017(1) 0.010(1) 

Y14 0.0074(9) 0.006(1) 0.019(1) 0.0076(8) 

0.010(1) 0.005(1) 0.026(1) 0.014(1) 

Y15 0.016(1) 0.034(2) 0.109(3) 0.035(2) 

0.022(2) 0.034(2) 0.152(5) 0.054(3) 

Y16 0.0064(9) 0.019(1) 0.008(1) 0.0050(8) 

0.006(1) 0.019(1) 0.014(1) 0.009(1) 

- U23 = U12 = 0. 
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Table 4. Interatomic Distances (< 4.0 A) for Y^Te, (296K). 

Atom 1 Atom 2 Mult. Distance Atom 1 Atom 2 Mult. Distance 

Tel Y2 2.\ 3.140(2) Te5 Y9 2x 3.131(2) 

Y3 2.x 3.157(2) Y l l  2x 3.126(2) 

Y9 3.153(3) Y15 3.298(3) 

Y I O  3.199(3) 

Y14 2.\ 3.145(2) Te6 Yl 2x 3.139(2) 

Y2 2x 3.135(2) 

Te2 Y3 2x 3.162(2) Y4 2x 3.108(2) 

Y4 2x 3.150(2) Y8 3.167(3) 

Y I 2  2x 3.144(2) Y16 3.159(2) 

Y13 3.203(3) 

Y16 3.178(2) Y1 Te6 2x 3.139(2) 

Y7 2x 3.441(2) 

Te3 Y6 3.130(3) Y8 2x 3.560(3) 

Y7 3.090(2) Y I O  3.720(3) 

Y I l  2x 3.146(2) Y12 3.594(3) 

Y12 2x 3.155(2) Y16 2x 3.512(3) 

Y13 3.126(2) 

Y2 Tel 2x 3.140(2) 

Te4 Y5 3.223(3) Te6 2x 3.135(2) 

Y6 2x 3.160(2) Y3 3.935(3) 

Y7 2x 3.132(2) Y4 3.918(3) 

Y I O  3.232(3) Y8 2x 3.651(3) 

Y14 2x 3.136(2) Y8 3.756(3) 

Y I O  2x 3.558(2) 

Te5 Y5 2x 3.136(2) 

V6 3.249(2) 
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Table 4. (continued) 

Y3 

Y4 

Y5 

Y6 

Tel 

Te2 

Y4 

Y9 

Y13 

2x 

2x 

2x 

2x 

3.157(2) 

3.162(2) 

3.750(3) 

3,471(2) 

3.574(3) 

Te2 2x 3.150(2) 

Te6 2x 3.108(2) 

Y2 3.918(3) 

Y3 3.750(3) 

Y16 2x 3.451(2) 

Y16 2x 3.561(2) 

Te4 3.223(2) 

Te5 2x 3.136(2) 

Y5 3.425(4) 

Y6 2x 3.531(2) 

Y6 2x 3.623(2) 

Y9 3.792(3) 

Y14 2x 3.634(2) 

Te3 3.130(3) 

Te4 2x 3.160(2) 

Te5 3.249(2) 

Y5 2x 3.531(2) 

Y5 2x 3.623(2) 

Y6 

Y7 

Y8 

Y9 

Y7 3.908(3) 

Y l l  2x 3.991(3) 

Te3 3.090(2) 

Te4 2x 3.132(2) 

Y1 2x 3.441(2) 

Y6 3.908(3) 

Y I O  2x 3.583(2) 

Y12 2x 3.818(3) 

Te6 3.167(3) 

Y1 2x 3.560(3) 

Y2 2x 3.651(3) 

Y2 3.756(3) 

Y8 2x 3.315(4) 

Y I O  2x 3.413(3) 

Tel 3.153(3) 

Te5 2x 3.131(2) 

Y3 2x 3.471(2) 

Y5 

Y13 

Y14 

Y15 

2x 

2x 

3.792(3) 

3.642(3) 

3.578(3) 

3.532(4) 
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Table 4. (continued) 

Y I O  Tel 3.199(3) Y13 Y l l  2x 3.629(3) 

Te4 3.232(3) Y12 2x 3.938(3) 

Y1 3.720(3) Y15 2x 3.448(4) 

Y2 2x 3.558(2) 

Y7 2x 3.583(2) Y14 Tel 2x 3.145(2) 

Y8 2x 3.413(3) Te4 2x 3.136(2) 

Y14 2x 3.790(3) Y5 2x 3.634(2) 

Y9 2x 3.578(3) 

Y l l  Te3 2x 3.146(2) Y I O  2x 3.790(3) 

Te5 2x 3.126(2) 

Y6 2x 3.991(3) Y15 Te5 3.298(3) 

Y13 2x 3.629(3) Y9 2x 3.532(4) 

Y15 2x 3.601(3) Y l l  2x 3.601(3) 

Y15 3.806(4) Y l l  3.806(4) 

Y13 2x 3.448(4) 

Y12 Te2 2x 3.144(2) Y15 2x 3.185(7) 

Te3 2x 3.155(2) 

Y1 3.594(3) Y16 Te2 3.178(2) 

Y7 2x 3.818(3) Te6 3.159(2) 

Y I 3  2x 3.938(3) Y1 2x 3.512(2) 

Y I 6  2x 3.731(3) Y4 2x 3.451(2) 

Y4 2x 3.561(2) 

Y13 Te2 3.203(3) Y12 2x 3.731(3) 

Te3 3.126(2) Y16 3.553(4) 

Y3 2x 3.574(3) 

Y9 3.642(3) 
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Table 5. Interatomic Distances (< 4.0 A) for YgTcj (173K). 

Atom 1 Atom 2 Mult. Distance Atom 1 Atom 2 Mult. Distance 

Tel Y2 2x 3.138(2) Te5 Y5 2x 3.126(2) 

Y3 2x 3.154(2) Y6 3.253(3) 

Y9 3.149(3) Y9 2x 3.125(2) 

Y I O  3.200(3) Y l l  2x 3.122(2) 

Y14 2x 3.140(2) Y15 3.300(4) 

Te2 Y3 2x 3.158(2) Te6 Y1 2x 3.137(2) 

Y4 2x 3.145(2) Y2 2x 3.134(2) 

Y12 2x 3.139(2) Y4 2x 3.108(2) 

Y13 3.202(3) Y8 3.161(3) 

Y16 3.178(3) Y16 3.152(3) 

Tc3 Y6 3.127(3) Y1 Te6 2x 3.137(2) 

Y7 3.094(3) Y7 2x 3.437(3) 

Y l l  2x 3.146(2) Y8 2x 3.558(3) 

Y12 2x 3.156(2) Y I O  3.710(3) 

Y13 3.181(3) Y12 3.587(3) 

Y16 2x 3.512(3) 

Te4 Y5 3.211(3) 

Y6 2x 3.156(2) Y2 Tel 2x 3.138(2) 

Y7 2x 3.132(2) Te6 2x 3.134(2) 

Y I O  3.227(3) Y3 3.926(3) 

Y14 2x 3.133(2) Y4 3.914(3) 

Y8 2x 3.650(3) 
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Table 5. (continued) 

Y2 Y8 3.752(3) Y6 Y5 2x 3.524(3) 

Y I O  2x 3.559(3) Y5 2x 3.615(3) 

Y7 3.902(3) 

Y3 Tel 2x 3.154(2) Y l l  2x 3.990(3) 

Te2 2x 3.158(2) 

Y4 3.750(3) Y7 Te3 3.094(3) 

Y9 2x 3.468(3) Te4 2x 3.132(2) 

Y13 2x 3.570(3) Y1 2x 3.437(3) 

Y6 3.902(3) 

Y4 Te2 2x 3.145(2) Y I O  2x 3.572(3) 

Te6 2x 3.108(2) Y12 2x 3.818(3) 

Y2 3.914(3) 

Y3 3.750(3) Y8 Te6 3.161(3) 

Y16 2x 3.446(3) Y1 2x 3.558(3) 

Y16 2x 3.555(3) Y2 2x 3.650(3) 

Y2 3.752(3) 

Y5 Te4 3.211(3) Y8 2x 3.313(4) 

Te5 2x 3.126(2) Y I O  2x 3.410(3) 

Y5 3.425(5) 

Y6 2x 3.524(3) Y9 Tel 3.149(3) 

Y6 2x 3.615(3) Te5 2x 3.125(2) 

Y9 3.794(4) Y3 2x 3.468(3) 

Y14 2x 3.628(3) Y5 3.794(4) 

Y13 3.624(4) 

Y6 Te3 3.127(3) Y14 2x 3.575(3) 

Te4 2x 3.156(2) Y15 2x 3.522(5) 

Te5 3.253(3) 
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Table 5. (continued) 

Y I O  Tel 3.200(3) Y13 Y l l  2x 3.632(3) 

Te4 3.227(3) Y12 2x 3.939(3) 

Y1 3.710(3) Y15 2x 3.441(4) 

Y2 2x 3.559(3) 

Y7 2x 3.572(3) Y14 Tel 2x 3.140(2) 

Y8 2x 3.410(3) Te4 2x 3.133(2) 

Y14 2x 3.791(3) Y5 2x 3.628(2) 

Y9 2x 3.575(3) 

Y l l  Te3 2x 3.146(2) Y I O  2x 3.791(3) 

Te5 2x 3.122(2) 

Y6 2x 3.990(3) Y15 TeS 3.300(4) 

Y13 2x 3.632(3) Y9 2x 3.522(5) 

Y15 2x 3.592(4) Y l l  2x 3.592(4) 

Y15 3.801(4) Y l l  3.801(4) 

Y13 2x 3.441(4) 

Y12 Te2 2x 3.139(2) Y15 2x 3.177(8) 

Te3 2x 3.156(2) 

Y1 3.587(3) Y16 Te2 3.178(3) 

Y7 2x 3.818(3) Te6 3.152(3) 

Y13 2x 3.939(3) Y1 2x 3.512(3) 

Y16 2x 3.733(3) Y4 2x 3.446(3) 

Y4 2x 3.555(3) 

Y13 Te2 3.202(3) Y12 2x 3.733(3) 

Te3 3.181(3) Y16 3.534(5) 

Y3 2x 3.570(3) 

Y9 3.624(3) 
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Figure 1. Near-[OIO] projection of the Y^Te, unit cell (99.9% probability thermal ellipsoids) with bonds drawn for 
J(Y—Y) < 3.85A. Intershcet distances marked in A. Dark atoms are tellurium; light atoms, yttrium. 
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Figure 2. (A) Less-condensed corrugated sheet and (B) more condensed corrugated sheet in YkTcj with bond 
distances marked in A. Two-fold rotation axes pass through the middle ofbonds for ^'5—Y5, Y8—Y8, 
Y15-Y15,and Y16-Y16. 
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Figure 3. Comparison of the locations and directions of exaggerated thermal parameters 
found in (A) YgTcs and (B) the subcell of Sc9Te2. Circled are regions of 
disorder and in (B) the arrows mailt the actual atomic displacement pattern. 
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APPENDIX B. SYNTHESIS AND STRUCTURE OF THE 
Sco.847(7)Te AND SCo,69(3)-o.94(i)Te COMPOUNDS 

A paper prepared for submission to an Inorganic Chemistry 

Paul A. Maggard and John D. Corbett 

Department of Chemistry. Iowa State University, Ames, IA 50011 

Abstract 

ScoM7C)Te and Sco6„3,.y94,i)Te were synthesized by high-temperature solid-state 

techniques and characterized at 23 "C by single crystal X-ray diffraction. Sco s47,7,Te is 

rhombohedrat R-3m (No. 166, Z = 6) with u = 4.115(1) A, c = 30.300(6) A and V = 

444.3(1) A\ while Sc^Te is hexagonal P-62m (No. 187, Z= 2) with a = 4.1121(4) -

4.1255(3) A, f = 6.752( 1) - 6.7283(7) A and V = 98.87(2) -99.17(1) for 0.69(3) 5 .v s 

0.94( 1) respectively. ScoH47(7)Te and Sco6.>.owTe are intermediate in composition between 

the known SciTe, (defect NaCl-type) and ScTe (NiAs-type) compounds. The new 

Sco iu7(?)Tc has tellurium layers that stack ABABCBCAC (or chh)3, with scandium in all 

the octahedral interstices, except every third layer which is 54(2)% vacant. Crystals of 

this compound obtained only after arc-melting are obverse/reverse twinned, and upon 

annealing at - 900''C transform to Sco59.o9jTe. Sc,Te has hep tellurium layers with 

scandium occupying a range of 69(3) - 94( 1)% of all of the octahedral sites. The result 

is an unusual nonstoichiometric NiAs-related structure, which can also be synthesized by 
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a low-temperature reaction (500 -QOO^C) of scandium with ScjTej. The Sco 69.u 94Te 

composition spans almost the entire range between the known SciTe, and ScTe 

compounds. 

Introduction 

The search for new metal rich compounds in the Sc-Te system included the 

discovery of new binary compounds close to the 1:1 compositions. There are three 

scandium-telluride compounds reported with a Sc:Te ratio near 1: ScjTe,,' ccp tellurium 

with scandium randomly occupying 2/3 of the octahcdral sites (NaCl-type). ScTe,- hep 

tellurium with scandium fully occupying the octahedral voids (NiAs-type), and Sc^ jTe,/ 

an intermediate containing both hep and ccp tellurium regions, stacking as 

ABCACABCBCAB or (cchh), with scandium occupying all octahedral sites, except that 

every other gallery is 1/3 empty. The structures Sc^Tcj and ScTe were determined from 

X-ray powder diffraction data on film, while the larger superstructure, ScjjTe,, was 

determined from X-ray single crystal data on film. The samples were prepared from 

reactions at lOOCC and lOSCC respectively, and their phase widths were not 

investigated. In this 2:3 to 1:1 composition region, different tellurium stackings evidently 

result from the small energy differences between the hep and ccp alternatives. For 

comparison, the Ti,.,S system has approximately 15 polytypes which also differ in the 

sulfur stacking and titanium occupancies, and with repeating patterns of sometimes more 

than 100 layers.^ Two new compounds were identified in the 2:3 to 1:1 Sc:Te 

composition region, Scq g47(7)Te and Sco69(]).o«4(i)Te, and their single-crystal structure and 
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synthesis are described herein that shows only the beginning details into the probably 

complex non-equilibrium chemistry of this area. 

Experimental 

Synthesis of Sco^7,7,Te. This began with the preparation of Sc^Tcj from 

elemental scandium and tellurium with purities as described before/ Appropriate 

amounts of Sc and ScjTcj to give the compositions Sc^o.^ a?.: ?, j oTcj were pelletized 

inside a He-filled glovebox with the aid of a hydraulic press. The resulting pellets were 

then arc-melted for 20 s per side with a current of 60 amps. Guinier patterns of the 

products at this point revealed quantitative yields (> 95%) of Sco s47,7)Te in the first three 

reactions, and a mixture containing mostly ScTe (NiAs) and a smaller amount of 

Sco !i47(7)Te in the last one. These and identically prepared samples were annealed in 

sealed tantalum tubing at 900 - 1100 "C for 24 - 72 hrs, and allowed to radiatively cool. 

After annealing, Guinier powder diffraction film data again revealed quantitative yield of 

the Scog47(7)Te phase in the first three reactions, and ScTe (NiAs) in the last. 

Synthesis of Sc,Te. This began with the preparation of Sc^Tcj from elemental 

scandium and tellurium with purities as described before.^ Appropriate amounts of Sc 

and SciTcj to give the compositions Scq? 011.09.1 oTe were pelletized inside a He-filled 

glovebox with the aid of a hydraulic press. Pellets of these compositions were sealed 

inside tantalum and fused-silica tubing and heated to 1100 - 1300 "C for 2 - 14 days. 

Guiner patterns of the products at this point revealed a mixture of Sc^Te and an unknown 
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( 1 - 2  s t r o n g  l i n e s ,  i n  t h e  s a m e  i n t e n s i t y  p r o p o r t i o n s  a s  S c , T e  l i n e s ) .  S c T e  ( N i A s - t y p e )  

was prepared by arc-melting a reaction loaded Sc, iTe and annealing at lOOCC for 2 days. 

No samples simultaneously contained both the new Sc,Te phase and either Sc^Tcj or 

ScTe. Reactions under non-equilibrium conditions, at lower temperatures of 500 - 800 

"C and varied time durations, showed that the crystals grew as dendritic plates from the 

surface of the scandium metal. These same plates were scraped from the scandium metal 

surface, and Guinier powder diffractions revealed a similar mixture of Sc,Te and the 

same unknown. Although light/dark areas from EDS probing suggested more than one 

phase was present, the lighter areas could never be synthesized as a separate phase. 

Powder X-ray DifTraction. The powder diffraction patterns of Sc„M7,7)Te and 

Sco69,3,.o 94(i|Te were obtained with the aid of an Enraf-Nonius Guinier powder camera and 

monochromatic Cu Ka, radiation. The samples were crushed into powder form, mixed 

with standard silicon (NIST), and placed between two strips of Scotch-brand tape on a 

frame for mounting on the camera rotation motor. Lattice parameters were obtained by 

least squares from the measured and indexed lines in each sample. The lattice parameters 

for Scos47,7)Te and Sco6.^3,.o94<nTe are given in Table 1 along with those for the other 

reported ~l: 1 Sc:Te compounds. 

Single Crystal DifTraction of SCoj47(7,Te. Several black, irregularly shaped 

crystals were obtained from a reaction loaded Sc^ 7Te3 and mounted inside 0.3mm i.d. 

glass capillaries sealed off and attached to metal pins. Their crystal quality was checked 

by means of Laue photographs, and the best crystal from the group was selected for a data 
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set collection on a Rigaku AFC6R (Mo Ka, radiation) diffractometer equipped with a 

rotating anode and operating at room temperature. Twenty five centered reflections 

gathered from a random search were used to determine provisional lattice constants and 

the crystal system. One-quarter of a sphere of data was collected (h, ±k, I), and these 

were subsequently corrected for Lorentz and polarization effects. The data were further 

corrected for absorption with the aid of three »|j-scans. Of 2226 measured reflections (20 

< 54"), 779 had / > 3o(/), and 510 of these were unique. Observation conditions showed 

two classes of reflections, -h + k + 1 = 3n and h - k + 1 = 3n, characteristic of 

obverse/reverse twinning for a rhombohedral system. There were several possible space 

groups, of which only R-6m (No. 166) was found to result in a reasonable crystal 

structure solution. The structure was solved by direct methods and refined with 

obverse/reverse twinning using the SHELXTL" program. After anisotropic refinement, 

large displacement parameters suggested a reduced occupancy of the Sc3 site. The final 

refinement converged at R\/wR2 = 3.6/2.8 % for the composition Scog47,7)Te, and a minor 

twin proportion of 0.30(9). Selected crystallographic data, atomic positions, temperature 

f a c t o r s  a n d  i n t e r a t o m i c  d i s t a n c e s  a r e  g i v e n  i n  T a b l e s  2 - 5 .  

Single Crystal DifTraction of Sco.m(jm,4<i,Te. Several plate-like crystals obtained 

from reactions loaded Scu-t o^Te were mounted inside 0.3mm i.d. glass capillaries and 

attached to metal pins. Their crystal quality was checked by means of Laue photographs, 

and the best crystal of each group selected for a data set collection on a Rigaku AFC6R 

diffractometer equipped with a rotating anode and operating at room temperature. 
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Twenty-five centered reflections gathered from a random search were used to determine 

provisional lattice constants and crystal system. A search for additional reflections 

corresponding to the unknown powder diffraction lines, as noted in the synthesis section, 

was performed by scanning reciprocal axis directions for extra reflections, but none were 

found. One-quarter of a sphere of data was collected (h, ±k, 1), and these were 

subsequently corrected for Lorentz and polarization effects. The data were further 

corrected for absorption with the aid of three averaged scans. In the single crystal 

structure solution of Sco s'iTe. there were 260 measured reflections (20 <; 56"), 200 had / > 

3o(/), and 199 of these were unique. Most single-crystal data sets showed 00/ classes of 

reflections, usually 5-10 strong reflections, that reduced the symmetry from P6/mmc 

(No. 194, NiAs-type) to P-6m2 (No. 187). However, ignoring these violations 

(incorrectly) would still allow refmements with agreeable R indices and thermal 

ellipsoids in the higher-symmetry P6j/mnic space group in the NiAs structure type. The 

structure was solved by direct methods (SHELXS") and refined with the TEXSAN' 

package in P-6m2. Subsequent trial reflnements in additional hexagonal space groups 

were unsuccessful. After anisotropic refinement, large displacement parameters 

suggested an occupancy refinement on the Sc site. The final refinement converged at 

R!R^ = 2.2/2.6 for the Sco g9,3,Te composition. Additional data set collections on different 

crystals gave the compositions Scaq4(i,.o72(3).o69(3)Tc- Selected crystallographic data, 

atomic positions, temperature factors and interatomic distances are given in Tables 6-9. 
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Results and Discussion 

Lattice Constants. Lattice constants of all known phases in the Sc,Te (2/3 ^ .r < 

1) range are given in Table 1. Altogether, there are now five reported (equilibrium?) 

phases existing within this narrow composition. Scos4-.,7)Te has not shown a measurable 

phase width, and is known to be a metastable phase that converts to Sc,Tc upon 

annealing. Sc,Te has a large phase width e.xtending from .v = 2.1 - 2.8. The lattice 

constant and phase width ranges are taken from products of reactions loaded 

Sco 7.oit.ori oTe, but the end-points have been difficult to determine, as the composition 

spans almost the entire range from Sc^Te, to ScTe, and there is always the presence of a 

suspicious impurity. The original study of ScTe (postulated NiAs-typc) reported lattice 

constants and synthesis conditions more consistent with the Sc^Te compounds here, and 

are within the same listed range in the Table. Experiments performed here give more 

accurately the lattice constants of stoichiometric ScTe (NiAs) with a larger c parameter. 

An interesting trend in the last column of Table 1 is the average separation of the 

closest-packed tellurium layers, and the effect of increasing scandium concentration. The 

smallest tellurium spacing is for ccp Sc^Te,' at 3.121. Intermediate phases containing 

both hep and ccp tellurium layers are Sci jTej (Sco7m,Tc), Sco M7,7,Te, and Sco6.i(j,.o94<i)Te 

(Sc,Te) at 3.383, 3.367, and 3.364 - 3.376 respectively. Lastly, the ScTe phase has the 

largest tellurium layer separation at 3.440. This trend of increasing tellurium layer 

separation is expected as scandium fills the octahedral sites, and is also accompanied by 
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the transition from ccp to hep tellurium. This trend from ccp to hep tellurium packing is 

discussed below. 

Structural Descriptions. A [001] and near-[010] view of Sco (M7,->,Te are given as 

A and B in Figure I. The tellurium atoms stack ABABCBCAC, or (chh)}, containing 

regions both cubic-close packed and hexagonal-close packed. Scandium atoms occupy 

all the octahedral sites between the layers, except for every third layer, which 54(2) % 

full. This scandium vacancy in every third layer occurs between the chh triple repeat 

units, on the Sc3 sites. 

Nearest neighbor distances around each atom are given in Table 5. Tel and Te3 

are surrounded by a scandium octahedron, at 2.86 - 2.92 A, while Te2 is coordinated in a 

scandium trigonal prism at 2.93 - 2.96 A. Contrastingly, all three scandium positions are 

located in tellurium octahedra at 2.88 - 2.96 A. This packing generates short scandium 

distances for Scl - Sc2 at 3.39(4)A and Scl - Sc3 at 3.48(5) A. The marginally shorter 

scandium distance occurs across regions of hep tellurium (ABA or BCB), while the 

longer distance occurs within the region of ccp tellurium (ABC or BCA). This structure 

represents an intermediate between the ccp NaCl structure-type and the hep NiAs 

structure-typc, where the only difference is the coordination of scandium around 

tellurium. It is known in many metal and electron rich structures that tellurium prefers a 

scandium trigonal prismatic environment,^" and it is not surprising to see this transition 

from ccp to hep, or tellurium octahedral to trigonal prismatic scandium coordination. 
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A near-[OlO] view of the Sc,Te (0.69 ^ x ^ 0.94) unit cell is shown in Figure 2. 

Tellurium is hep as in the NiAs structure type. Scandium atoms occupy all the octahedral 

voids between the tellurium layers and are distorted towards one another into dimeric 

units. Each scandium site is from 69(3) - 94( I) % filled. This structure type converts to 

the NiAs structure by fixing the scandium r parameter at 1/4. 

The interatomic distances for Sc^Te are given in Table 9 for .v = 0.89. Tel and 

Te2 are surrounded by a scandium trigonal prism at 2.86 - 2.98 A, while scandium has a 

tellurium octahedral environment also at 2.86 - 2.98 A. The scandium displacement has 

resulted in short and long Sc - Sc distances at 3.17(1) and 3.58(1) A. The stoichiometric 

ScTe (NiAs-type) structure has a uniform Sc - Sc distance of 3.44 A down the c a.\is. 

Conclusions. Two new binary compounds, Sco g47,7)Te and Scoo.„j,.o94,i)Te, have 

been synthesized. ScoH47(-)Te contains hep and cep tellurium regions, with scandium 

occupying the octahedral sites, which are 54(2) % absent every third layer. Sc,Te has hep 

tellurium packing, with scandium occupying the octahedral sites from 69(3) - 94( 1) %, or 

almost the entire range between the known Sc2Te3 and ScTe compounds. Both 

compounds are intermediate in composition between the 2:3 and 1:1 Sc:Tc phases. Also, 

the lattice parameters for the previously reported ScTe (NiAs-type) are more consistent 

with the Sc^Te phases than with the ScTe compound reported here. 
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Table 1. Lattice constants of Sc,Te (2/3 <. .x <. 1) reported binary phases. 

Compound a c y A/ T e  
layer 

Ref 

ScJej (NaCI) 5.405(5) - 157.9(3) 3.121 1 

ScijTes 4.109(4) 40.59(5) 593(1) 3.383 2 

ScoiutTc 4.115(1) 30.300(6) 444(1) 3.367 

SC0(,9.0 94Tej'' 4.1121(4)- 6.752(1)- 98.87(2)- 3.364 -

4.1255(3) 6.7283(7) 99.17(1) 3.376 

ScTe (NiAs)'' 4.112(1) 6.879(3) 100.73(6) 3.440 

" The previously reported ScTe (NiAs) phase shows lattice parameters in the same range 
and synthesis more consistent with the Sc,Te phases reported here: u - 4. II 2(5), c = 

6.735(5). 

'' Lattice constants from Guiner powder diffraction refinements from experiments 
perfomed herein. 
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Table 2. Single Crystal X-ray Data Collection and Refinement Parameters for Sco mtoTc. 

Formula weight, g mol ' 496.99 

Space group, Z R-3m (No. 166), 6 

'4ic (g cm-^) 5.160 

u (Mo K,) (cm ') 157.02 

Diffractometer Rigaku AFC6R 

Octants collected ±h, k, ±1 

20-maximum (deg.) 54 

Independent Parameters 22 

Processed Reflections 2226 

Observed reflections (> 3o) 779 

Unique reflections 510 

Residuals R\ ,  wRI , "  %  3.6; 2.8 

Minor twin proportion (BASF parameter) 0.30(9) 

" R\ = SIIFJ w/?2 = [Vw(F„- - F,-)-/V\v(F,-)-]' % w = 1/(0^)^ 
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Table 3. Positional and Isotropic Thermal Parameters for Sco g47(7)Te. 

atom X .1' 2 ficM(A-) 

Tel 0 0 0.15296(3) 0.007(1) 

Te2 2/3 1/3 0.2632(2) 0.0126(3) 

Te3 1/3 2/3 0.37405(7) 0.013(1) 

Scl 0 0 0.4320(7) 0.015(1) 

Sc2 1/3 2/3 0.2080(8) 0.008(2) 

ScB" 0 0 0.313(2) 0.012(6) 

" Position occupancy: 0.54(2)%. 

Table 4. Anisotropic Thermal Parameters for Sco!u-,^)Te. 

atom U l l "  U22 U33 U13 

Tel 0.008(2) 0.008 0.007(3) 0.0038 

Te2 0.0124(4) 0.0124 0.0132(5) 0.0062 

Te3 0.012(2) 0.012 0.014(3) 0.0061 

Scl 0.0172(8) 0.0172 0.010(3) 0.0086 

Sc2 0.009(2) 0.009 0.007(7) 0.004 

Sc3 0.018(5) 0.018 0.01(1) 0.009 

" U23 = UI2 = 0 
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Table 5. Interatomic Distances (< 4.0 A) for Scog47,7,Te. 

Atom 1 Atom 2 Mult. Distance Atom 1 Atom 2 Mult. Distance 

Tel Scl 3x 2.92(1) Scl Tel 3x 2.92(1) 

Sc2 3x 2.92(1) Te3 3x 2.96(2) 

Sc2 3.39(4) 

Te2 Sc2 3.x 2.88(2) Sc3 3.48(5) 

Sc3 3x 2.86(2) 

Sc2 Tel 3x 2.92(1) 

Te3 Scl 3x 2.93(2) Te2 3x 2.88(2) 

Sc3 3x 2.96(2) Scl 3.39(4) 

Sc3 Te2 3x 2.86(2) 

Te3 3x 2.96(2) 

Scl 3.48(5) 
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Table 6. Single Crystal X-ray Data Collection and Refinement Parameters for Sc,Te 
phases, .r = 0.89. 

Formula weight, g mol' 169.86 

Space group, Z P-62m(No .  187), Z = 2 

<Lk (g cm-^) 5.687 

^ (Mo K„) (cm ') 87.914 

Diffractometer Rigaku AFC6R 

Octants collected h, ±k, 1 

20-maximum (deg.) 56 

Independent Parameters 9 

Processed Reflections 260 

Obserx ed reflections (> 3o) 200 

Unique reflections 199 

Residuals R, R^," % 2.2, 2.6 

- R =  2IIFJ -|F,||/I|FJ; K = [ iMFj  -  F/)-/Vw(F,-)-]' % w = l/(o,-)^ 
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Table 7. Positional and Isotropic Thermal Parameters for Sc,Te, x = 0.94, 0.89, 0.72, 
0.69. 

atom .r >• -

Tel 0 0 0 0.67(2) 

Te2 1/3 2/3 1/2 0.86(3) 

SC 2/3 1/3 0.260(3) 0.92( 1) 

"0.257(1) 

0.259(2) 

0.271(2) 

" Position occupancy %: 0.94( I), 0.89(3), 0.72(3), 0.69(3), respectively. 

" : parameters from additional single crystal data collections, as before. 

Table 8. Anisotropic Thermal Parameters for Sc^Te for .t = 0.89. 

atom U l l - U22 U33 U12 

Tel 0.0082(3) 0.0082 0.092(5) 0.0041 

Te2 0.0113(4) 0.0114 0.0100(5) 0.0057 

Sc 0.0138(1) 0.0138 0.0111(4) 0.0069 

" U13 = U23=0 
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Table 9. Interatomic Distances (< 4.0 A) for Sc,Te for.v = 0.89. 

Atom 1 Atom 2 Mult. Distance Atom 1 Atom 2 Mult. Distance 

Tel Scl 6x 2.983(6) Sc Tel 3.\ 2.983(6) 

Te2 3x 2.863(7) 

Te2 Scl 6x 2.860(7) Sc 3.17(1) 

Sc 3.58(1) 
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Figure 1. EDS picture of Sc^Te. 
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Figure 2. A [001] (A) and a near-[010](B) view of Sc, •om7(7(Te. 
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QD QD 

Figure 3. A near-[010] view of the Sc^Te (0.69 < .r < 0.94) unit cell. 
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